AQA Maths Pure Core 3 Mark Scheme Pack 2006-2015

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and	is for accuracy			
В	mark is independent of M or m marks and	d is for method	and accuracy		
E	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\sec^2 3x$	M1	2	for sec $3x$ SC/3sec ² x B1
	AlternativeUse of product/Quotient rule(M1) $\frac{3\cos^2 3x + 3\sin^2 3x}{\cos^2 3x}$ (A1)	Al	2	Good attempt Correct
(b)	$\frac{dy}{dx} = \frac{(2x+1)3 - 2(3x+1)}{(2x+1)^2} = \frac{6x+3 - 6x - 2}{(2x+1)^2}$	M1 A1		use of quotient rule
	$=\frac{1}{\left(2x+1\right)^2}$	A1	3	AG (no errors)
	Alternative $-2(3x+1)(2x+1)^{-2} + 3(2x+1)^{-1}$ (M1A1)			Alternative:
	$=\frac{1}{\left(2x+1\right)^2}$ (A1)			$y = \frac{3}{2} - \frac{1}{2}(2x+1)^{-1}$ M1A1 $\frac{dy}{dx} = (2x+1)^{-2}$ A1
				$=\frac{1}{\left(2x+1\right)^2}$ AG
	Total		5	
2	$\int_{1}^{3} \frac{1}{\sqrt{1+x^{3}}} dx$ $x \qquad y$			
	$ \begin{array}{r} 1 & 0.707(1) \\ 1.5 & 0.478(1) \end{array} $	B1		3 correct SC B1 for all correct
	2 0.333(3) 2.5 0.245(3) 3 0.189(0)	B1		all correct wrongly evaluated
	A = $\frac{1}{3} \times 0.5 \begin{bmatrix} y(1) + y(3) + \\ 4(y(1.5) + y(2.5)) + 2(y(2)) \end{bmatrix}$	M1		use of Simpson's rule
	= 0.743	A1	4	
	Total		4	

MPC3 (cont)			~
Q	Solution	Marks	Total	Comments
3(a)(i)	$f' = \frac{dy}{dx} = 4x^3 + 2$	B1	1	
(ii)	$\int \frac{2x^3 + 1}{x^4 + 2x} \mathrm{d}x$			
	$=\frac{1}{2}\ln\left(x^{4}+2x\right)(+c)$	M1 A1	2	For $k \ln (x^4 + 2x)$ By substitution $k \ln u$ M1 correct A1
(b)(i)	u = 2x + 1			
	du = 2 dx	B1		
	$\int x\sqrt{2x+1} \mathrm{d}x =$			
	$\int \left(\frac{u-1}{2}\right) \sqrt{u} \frac{\mathrm{d}u}{2}$	M1		Must be in terms of u only incl. du
	$=\frac{1}{4}\int \left(u^{\frac{3}{2}}-u^{\frac{1}{2}}\right)\mathrm{d}u$	A1	3	AG
(ii)	$\int_0^4 \mathrm{d}x = \int_1^9 \mathrm{d}u$	B1		Or changing u 's to x 's at end
	$\frac{1}{4}\int u^{\frac{3}{2}} - u^{\frac{1}{2}} = \frac{1}{4} \left[\frac{u^{\frac{5}{2}}}{\frac{5}{2}} - \frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right]$	M1 A1		
	$=\frac{1}{4}\left[\left(\frac{2}{5}(9)^{\frac{5}{2}}-\frac{2}{3}(9)^{\frac{3}{2}}\right)-\left(\frac{2}{5}-\frac{2}{3}\right)\right]$			
	$=\frac{1}{4}\left[79.2+0.2\dot{6}\right]$			Sight of any of these 3 lines
	=19.86			
	=19.9	A1	4	AG
	Total		10	

	Solution	Marks	Total	Comments
<u> </u>	$2\cos \sec^2 x = 5(1 - \cot x)$	1,141,115	1000	Comments
.(u)	$2 + 2 \cot^2 x = 5 - 5 \cot x$	M1		use of $\csc^2 x = 1 + \cot^2 x$
	$2 \cot^2 x + 5 \cot x = 3 = 0$	A 1	2	AG
	$2 \cot x + 3 \cot x - 5 = 0$	711	2	
(b)	$(2\cot x - 1)(\cot x + 3) = 0$	M1		or $2 + 5t - 3t^2 = 0$ Or in $\tan x$
				(2-t)(1+3t) = 0
	$\cot r = \frac{1}{2} = 3$			
	2, 5			
	$\tan x = 2, -\frac{1}{2}$	A1	2	AG
(c)	x = 11 - 20	B1	_	Any 2 correct] In degrees: B0
(0)	x = -0.3, 2.8 AWRT	B1		Any 3 correct B1
		B1	3	4 correct B2
	Total		7	
5(a)	<i>a</i> = -8	B1		
	$e^{2x} - 9 = 0$	M1		
	$e^{2x} = 9$			
	$2x = \ln 9$			
	$x = \ln 3$	A1	3	AG Condone verification
(b)	$(x^2x = 0)^2 = 4x = 10^2 x + 01$		_	
(0)	$(e^{-9}) = e^{-18e^{-81}}$	B1	1	AG
	$\mathbf{V} = -\int v^2 (d\mathbf{r})$	B1		
(0)	$\mathbf{v} = \mathbf{n} \int \mathbf{y} (\mathbf{d} \mathbf{x})$	21		
	$=(\pi)\int e^{4x} - 18e^{2x} + 81 dx$	M1		
	$\int 4r$ $\int \ln 3$	M1		1 ST or 2 nd term correct
	$=(\pi)\left \frac{e^{-x}}{4}-9e^{2x}+81x\right $	A1		All correct
	$=(\pi)\left[\left(\frac{e^{\ln 81}}{2}-9e^{\ln 9}+81\ln 3\right)-\left(\frac{1}{2}-9\right)\right]$	m1		Attempt at limits with ln3
	$=\pi[81\ln 3 - 52]$	A1	6	
(a)		M1		Modulus graph
	-4.8			
		A1F	2	All correct
	b. In3			
	-a			
	Total		12	

MPC3 (con	t)			
Q	Solution	Marks	Total	Comments
6(a)	f(0.5) = -0.875	M1		
	f(1) = 2			
	Change of sign ∴ root	A1	2	
(b)	$x^3 + 4x - 3 = 0$			
	$4x = 3 - x^3$	B1	1	
	$3 - x^3$			
	x =			AG
(c)(i)	$x_1 = 0.5$	M1		
	$x_2 = 0.71875$ 0.72 AWRT	A1		
	$x_3 = 0.66$	A1	3	
(ii)	1			
		M1		For cobweb r to curve
		. 1		For colored, x_1 to curve
		AI		For x_2
		A1	3	All correct
	$X_1 X_2 = X_2$			
	Т	otal	9	
7(a)	$(,\pi)$	D1	-	Or for -1 and 1
/(a)	$\left(1,\frac{\pi}{2}\right)$ OE in decimals	DI		
	(π)			
	$\left(-1,-\frac{\pi}{2}\right)$	B1	2	
	~ _)			
(a)				
		M1		Translation in $+ ve x$ direction
	A.			
		M1		Correct shape
				¥
	u 1 2 -		2	
		Al	3	Correct Graph
				1 mough (1,0) touching y = axis
	Т	otal	5	

Q	Solution	Marks	Total	Comments
8 (a)	(Range of f) ≥ 0	B1	1	
(b)(i)	$\mathrm{fg}(x) = \frac{1}{\left(x+2\right)^2}$	B1	1	OE Maybe in part (ii)
(ii)	$\frac{1}{\left(x+2\right)^2} = 4$			
	$\left(x+2\right)^2 = \frac{1}{4}$	M1		Or $4(x+2)^2 = 1$
	$x+2=(\pm)\frac{1}{2}$	M1		(2x+5)(2x+3)=0
	$x = -\frac{5}{2}, -\frac{3}{2}$	A1 A1	4	
(c)(i)	Not one to one	E1	1	OE
(ii)	$x = \frac{1}{y+2}$	M1		$x \Leftrightarrow y$
	$y+2=\frac{1}{x}$	M1		Attempt to isolate
	$y = \frac{1}{x} - 2 \qquad \left(\frac{1 - 2x}{x}\right)$	A1	3	
	Total		10	

(cont) Saladian	Mart	T-4-1	Commercia
	Solution	Marks	lotal	Comments
9(a)	$y = x^{-2} \ln x$			
	$\frac{dy}{dx} = x^{-2} \frac{1}{x} - 2x^{-3} \ln x$	M1 A1 A1		Use of product or quotient each term
	$=\frac{1-2\ln x}{x^3}$	A1	4	Convincing argument $x^{-2} \times \frac{1}{x} = x^{-3}$ AG
(b)	$\int x^{-2} \ln x \mathrm{d}x \qquad u = \ln x \mathrm{d}v = x^{-2}$	M1		Attempt at integration by parts
	$\mathrm{d}u = \frac{1}{x} \qquad v = -x^{-1}$	A1		
	$\int = -\frac{1}{x} \ln x + \int x^{-2} \mathrm{d}x$	A1		
	$= -\frac{1}{x}\ln x - \frac{1}{x}(+c)$	A1	4	
c)(i)	At A, $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$			
	$1 - 2\ln x = 0$			
	$\ln x = \frac{1}{2}$	M1		Attempt at $\ln x = k$
	$x = e^{\frac{1}{2}}$	A1	2	
(ii)	$R = \left[-\frac{1}{x}(\ln x + 1)\right]_{1}^{5}$	M1		$R = \begin{bmatrix} \text{Their}(b) \end{bmatrix}_{1}^{5}$
	$= -\frac{1}{5} (\ln 5 + 1) + (\ln 1 + 1)$	A1		OE
	$=\frac{1}{5}(4-\ln 5)$	A1	3	convincing argument. AG

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and	d is for method	and accuracy		
E	mark is for explanation				
\sqrt{or} ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3				
Q	Solution	Marks	Total	Comments
1(a)	f(2) = -1			
	f(2.1) = +0.161	M1		both attempted
	change of sign $\therefore 2 < \alpha < 2.1$	A1	2	
(b)	$x^3 - x - 7 = 0$			
	$x^3 = x + 7$			
	$x = \sqrt[3]{x+7}$	B1	1	AG
(c)	$x_1 = 2$	M1		
	$x_2 = 2.0801$	A1		AWRT 2.08
	$x_3 = 2.0862$			AWRT 2.09
	$x_4 = 2.09$	A1	3	
	Total		6	
2(a)	$y = \left(3x - 1\right)^{10}$			
	$\frac{dy}{dy} = 10 (3r - 1)^9 \times 3$	M1 A1	2	M1 for $a(3x-1)^9$ where $a = \text{constant}$
	$dx = 10(3x^{-1}) \times 5$			
	$= 30 (3x-1)^9$			
	. 8			
(b)	$\int x(2x+1)^{\circ} dx$			
	u = 2x + 1			
	$\mathrm{d}u = 2 \mathrm{d}x$	B1		OE
	(u-1) (du)			
	$\int = \int \left(\frac{u-1}{2}\right) u^8 \left(\frac{u}{2}\right)$	M1		all in terms of u . Condone omission of du
	$=\frac{1}{4}\int u^9 - u^8 \mathrm{d}u$			
	$1 \begin{bmatrix} u^{10} & u^9 \end{bmatrix}$			u^{10} u^{9}
	$=\frac{1}{4}\left[\frac{1}{10}-\frac{1}{9}\right]$	B1		$p \overline{10} + q \overline{9}$
	$(2x+1)^{10}$ $(2x+1)^9$	A 1	A	
	$=\frac{-40}{40}$ $-\frac{-36}{36}$ (+c)	AI	4	OE; CAU SC: correct answer no working/parts
				in x (B1)
	Total		6	

_		-	_
E	D٨	Л	т
Г	- N	1	1

Q	Solution	Marks	Total	Comments
3(a)	$\sec x = 5$			
	$\cos x = 0.2$	M1		
	<i>x</i> = 1.37, 4.91 AWRT	A1A1	3	
(b)	$\tan^2 x = 3\sec x + 9$			
	$\sec^2 x - 1 = 3 \sec x + 9$	M1		for using $\sec^2 x = 1 + \tan^2 x$ OE
	$\sec^2 x - 3 \sec x - 10 = 0$	A1	2	AG
(c)	$(\sec x - 5)(\sec x + 2) = 0$	M1		or use of formula (attempt)
	$\sec x = 5, -2$	A1		
	$\cos x = 0.2, -0.5$			
	x = 1.37, 4.91	B1F		any 2 correct or ft their 2 answers in (a)
	2.09, 4.19	A1	4	all 4 correct, no extras
	Total		9	
4(a)(i)		D1	1	
(ii)	4 y- 2x-4	DI	1	y = x
(11)	y - t	M1		2 branches mod graph $x > 0$ for $y = 0$
		A1	2	for 2, 4
(b)(i)	x = 2x - 4, x = 4	B1		
	-x = 2x - 4	M1		
	4			
	$x = \frac{1}{3}$	A1	3	OE one value only
	Alternative:			
	$x^2 = \left(2x - 4\right)^2$	M1		
	$x = 4, \frac{4}{3}$	A1A1		
(ii)	$\frac{4}{-} < x < 4$	M1		$\frac{4}{-4}$, 4 (ft) identified as extremes
	3	Δ 1	C	
		ЛІ	2	

MPC3 (cont)			
Q	Solution	Marks	Total	Comments
5(a)	$y = e^{2x} - 10e^x + 12x$			
(i)	$dy = 2e^{2x} = 10e^{x} + 12$	B1		$2e^{2x}$
(1)	$\frac{-1}{dx} = 2e^{-10e^{-1}} + 12$	D1 D1	2	remaining terms correct no extras
		DI	2	Temanning terms correct, no extras
(**)	$d^2 v$ $2r$ r			
(11)	$\frac{d^{2}y}{dx^{2}} = 4e^{2x} - 10e^{x}$	B1F	1	ft 1 slip
(b)(i)	$2e^{2x} - 10e^x + 12 = 0$			
	$e^{2x} - 5e^x + 6 = 0$	B1	1	AG (be convinced)
(ii)	$z^2 - 5z + 6 = 0$	M1		use of $z = e^x$ oe
	z = 2, 3			
	$z=2, e^x=2$	M1		finding e^x = their 2,3
	$x = \ln 2$			
	$z = 3, e^x = 3$			
	$x = \ln 3$	Al	3	all correct AG
				SC: verification $\ln 2$ (B1)
				$\ln 2 (B1)$ $\ln 3 (B1)$
(iii)	$x = \ln 2$:			
	$y = e^{2\ln 2} - 10e^{\ln 2} + 12\ln 2$	M1		either substitution of their $x = \ln 2$
	or $2^2 - 10 \times 2 + 12 \ln 2$			$(e^x = 2)$ or their $x = \ln 3$ $(e^x = 3)$
	$= 4 - 20 + 12 \ln 2$			
	$= -16 + 12 \ln 2$	A1		
	$x = \ln 3$:			
	$v = e^{2\ln 3} - 10e^{\ln 3} + 12\ln 3$			
	$= 9 - 30 + 12 \ln 3$			
	$= -21 + 12\ln 3$	A1	3	
(iv)	$x = \ln 2$:			
	$d^2 y = 4 e^{2\ln 2} = 10 e^{\ln 2}$	M1		
	$\frac{1}{dx^2} = 4e^{-10e}$	111		use of; in either of their $e^x = 2,3$ into
				their $\frac{d^2 y}{d^2}$
				dx^2
	= 16 - 20 = -4	A 1		CSO
	$r = \ln 3$	AI		CSU
	d^2			
	$\frac{d^2 y}{dx^2} = 4e^{2\ln 3} - 10e^{\ln 3}$			
	ux = 36 - 30 = 6			
	∴ minimum	A1	3	CSO
	To	tal	13	
L		l	1	l

Q	Solution	Marks	Total	Comments
6(a)	$\therefore \int \ln x = 1(\ln 1.5 + \ln 2.5 + \ln 3.5 + \ln 4.5)$	M1		use of 1.5, 2.5,; 3 or 4 correct x values
	5	A1		AWFW 4 to 4.2
	= 4.08	A1	3	CAO
(b)(i)	$y = x \ln x$			
(D)(I)	$y = x \lim x$	M1		use of product rule (only differentiating 2
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x \times \frac{1}{x} + \ln x$	1011		terms with + sign)
	$dx = \ln x + 1$	A 1	2	
			-	
(ii)	$\int (\ln x + 1) dx = x \ln x$	M1		OE: attempt at parts with $u = \ln x$
(11)				
	$\int \ln x \mathrm{d} x = x \ln x - x(+c)$	Al	2	
(iii)	$\int \ln x dx = [x \ln x - x]_{-1}^{5}$			
	J			
	$=(5\ln 5-5)-(1\ln 1-1)$	M1		correct substitution of limits into their (ii)
	$5\ln 5 - 4$	Δ 1	2	provided ln x is involved
	Total	211	9	15 W
7(-)	sin x			
/(a)	$z = \frac{1}{\cos x}$			
	dz $\cos x \cos x - \sin x (-\sin x)$	M1		$(\pm \cos^2 x \pm \sin^2 x)$
	$\frac{1}{\mathrm{d}x} = \frac{1}{\mathrm{cos}^2 x}$	A1		use of quotient rule $\left(\frac{\cos^2 x}{\cos^2 x}\right)$
	1			
	$=\frac{1}{\cos^2 x}$			
	$= \sec^2 x$	A1	3	AG (be convinced)
(b)				
		M1		correct shape including asymptotic
				behaviour and symmetrical about $x = 0$
				and $y > 0$
				use of 1
	1	Al	2	use of 1
	$\left(-\frac{\pi}{2}\right)$ $\left[0, \left(\frac{\pi}{2}\right)\right]$			
	([-1)			
	I DESCRIPTION OF THE			
	$V = (k) \int \sec^2 x dx$			
		M1		
	$=(k)[\tan x]_0^1$	A1		
	= 4.89	A1	3	CAO
	Total		8	

MPC3 (cont)			
Q	Solution	Marks	Total	Comments
8(a)	$f(x) = 2e^{3x} - 1$			
	Range: $f(x) > -1$ (or $y > -1$ or $f > -1$)	M1		for –1 only
		A1	2	exactly correct
(b)	$y = 2e^{3x} - 1$			
	$x = 2e^{3y} - 1$	M1		$x \leftrightarrow y$
	$2e^{3y} = x + 1$			
	$e^{3y} = \frac{x+1}{2}$	M1		attempt to isolate
	2			
	$y = \frac{1}{2} \ln \left(\frac{x+1}{2} \right)$	A1	3	all correct with no error AG (be
	3 (2)			convinced)
				1.
(c)	1 (2) 1	M1		for differentiation of ln; $\frac{k}{\text{their}(x+1)}$
	$f'^{-1}(x) = \frac{1}{3} \left(\frac{2}{x+1} \right) \times \frac{1}{2}$ OE			$(x \pm 1)$
		A1		for $\frac{1}{2}$
		A1		all correct
	x = 0			
	$f'^{-1}(x) = \frac{1}{2}$	A1	4	CSO
	3		-	
	Alternative			
	$f^{-1}(x) = \frac{1}{2} \ln(x+1) - \frac{1}{2} \ln 2$	M1A1		
	$f'^{-1}(x) = \frac{1}{3(x+1)}$	A1		
	$\frac{J(\lambda + 1)}{1}$			
	$f'^{-1}(0) = \frac{1}{3}$	A1		CSO
	Total		9	

MPC3	(cont)
------	--------

Q	Solution	Marks	Total	Comments
9(a)	$x = \frac{1}{2}$ $y = \frac{\pi}{2}$ (or 1.57, sin ⁻¹ 1)	B1	1	ignore 90°
(b)(i)	$y = \sin^{-1} 2x$ $\sin y = 2x$ and			
	$\frac{1}{2}\sin y = x$	B1	1	AG (be convinced)
(ii)	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{2}\cos y$	B1	1	
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\cos y}$	M1A1		M1 for $\frac{k}{\cos y}$
	$\sin y = 2x \text{ and } \sin^2 + \cos^2 = 1$ $\cos y = \sqrt{1 - 4x^2}$	M1		use of to get $\cos y$ or $\cos^2 y$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{1-4x^2}}$	A1	4	AG; condone omission of proof of sign
	Total		7	
	TOTAL		75	

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
Е	mark is for explanation						
\sqrt{or} ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct <i>x</i> marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3

Q	Solution	Marks	Total	Comments
1	x = 1.5, 2.5, 3.5, 4.5	M1		Method
		A1		x values
	$y_1 = 0.7115$ 0.712			
	$y_2 = 0.5218$ 0.522			
	$v_2 = 0.4439$ 0.444 AWRT	A1		3 correct y's
	$v_4 = 0.3993$ 0.399			
	$A = 1 \times (v_{1} + v_{2} + v_{3} + v_{4})$			
	= 2.08	A1	4	
	Total		4	
2	Stretch (I)			
	se ¹ (II)	M1		For I + (II or III)
	$3F - \frac{1}{3}$ (II)			
	Parallel to $x - axis$ (III)	A1		All correct
	Translate	E1		Allow translation
	$\begin{pmatrix} 0\\1 \end{pmatrix}$	B1	4	Correct vector or description
			4	
2(a)		M(1 A 1	4	M1 for $f < 2 \le 2$
5(a)	$f(x) \leq 3$	MIAI	Z	$\begin{array}{l} \text{MI 101 1} < 3, x \leq 3 \\ \text{Condensus f range} \end{array}$
(b)(i)	2			Condone y, 1, range
	$y = \frac{2}{x+1}$			
	2	M1		Attempt to obtain r as a function of y or
	$x + 1 = \frac{2}{3}$	1011		<i>x</i> as a function of <i>x</i>
	<i>y</i>	M 1		
	$x = \frac{2}{-1}$	IVI I		$x \leftrightarrow y$ at any stage
	y	A 1	2	
	$y/g^{-1}(x) = \frac{2}{x} - 1 = \frac{2-x}{x}$	AI	3	Any correct form
(;;)	$\begin{pmatrix} -1 \\ \end{pmatrix}$	D1	1	
(11)	$(g'(x)) \neq -1$	DI	1	
(c)(i)	$h(x) = \frac{2}{x^2}$	M1		
	$3 - x^2 + 1$			
	$=\frac{2}{2}=\frac{2}{2}$	A1	2	
	$4-x^2 (2-x)(2+x)$			
(ii)	$(x \in \mathbb{R}), x \neq +2, x \neq -2$	B1	1	Condone omit 'x is real' Allow $x^2 \neq 4$
	Total		9	

MPC3 (con	t)		-	~
Q	Solution	Marks	Total	Comments
4(a)	$\int x \sin x \mathrm{d}x u = x$			
	$\frac{dv}{dx} = \sin x$ $\frac{du}{dx} = 1 v = -\cos x$	M1		For differentiating one term and integrating other
	$dx \int = -x \cos x - \int -\cos x (dx)$	m1 A1		For correctly substituting their terms into parts formula
(b)	$= -x\cos x + \sin x (+c)$ $u = x^{2} + 5$	A1	4	CSO
	du = 2x dx			
	$\int = \int \frac{1}{2} u^{\frac{1}{2}} (\mathrm{d}u)$	M1		$\int ku^{\frac{1}{2}}(du)$ condone omission of du but M0 if dx
		Al		$k = \frac{1}{2}$ OE
	$=\frac{u^{\frac{3}{2}}}{3}$	A1√		Ft $\int k u^{\frac{1}{2}} du$
	$=\frac{1}{3}\sqrt{(x^2+5)^3}$ (+c)	A1	4	CSO SC $\frac{2}{6}\sqrt{(x^2+5)^3}$ with no working B3
(c)	$y = x^2 - 9$			
	$x^2 = y + 9$			
	$V = \pi \int x^2 \mathrm{d}y$	B1		Must have π and x^2 , condone omission
	$=\pi\int(y+9)\mathrm{d}y$			of dy, but BU if dx
	$= (\pi) \left[\frac{y^2}{2} + 9y \right]_1^2 \text{ or } (\pi) \left[\frac{(y+9)^2}{2} \right]_1^2$	M1		$\int "their x^2" dy \text{ integrated} \qquad \pi \text{ not}$ Limits 2 and 1 substituted in necessary
	r			correct order including – sign
	$=(\pi)\left\lfloor 20-9\frac{1}{2}\right\rfloor$	ml		
	$=10\frac{1}{2}\pi$	A1	4	CSO
	Total		12	

MPC3 (con	t)	1		
Q	Solution	Marks	Total	Comments
5(a)(i)	$2(\csc^2 x - 1) + 5 \csc x = 10$	M1		
	$2\csc^2 x - 2 + 5\csc x - 10 = 0$			
	$2\csc^2 x + 5\csc x - 12 = 0$	A1	2	AG
(ii)	$(2 \operatorname{cosec} x - 3)(\operatorname{cosec} x + 4) = 0$	M1		Attempt to solve
	$\csc x = \frac{3}{2} \text{ or} - 4$	A1		Condone answers with no method shown
	$\sin x = \frac{2}{3} \text{ or } -\frac{1}{4}$	A1	3	AG
(b)	$(\theta - 0.1) = 0.73, 2.41, -0.25, -2.89$	B1		2 correct values, may be implied later $(41.8, 138.2, -165.5, -14.5)$
	$A = 0.83 \ 2.51 \ -0.15 \ -2.79 \ AWRT$	B 1		(1.0, 150.2, 105.5, 11.5)
	0 = 0.03, 2.51, -0.15, -2.77 AWKI	B1	3	+ 2 correct answers and no extra within
		BI	5	range
	Total		8	
6(a)(i)	$y = (4x^2 + 3x + 2)^{10}$			
	$\frac{dy}{dx} = 10 \left(4x^2 + 3x + 2\right)^9 (8x + 3)$	M1 A1	2	For $f(x)()^9$ where $f(x) \neq k$ and is linear
(11)	$y=x^2 \tan x$	MI		Product rule
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \sec^2 x + 2x \tan x$	A1	2	
(b)(i)	$x=2y^3+\ln y$			
	$\frac{\mathrm{d}x}{\mathrm{d}y} = 6y^2 + \frac{1}{y}$	B1	1	
(ii)	At (2,1)			
	$\frac{\mathrm{d}x}{\mathrm{d}y} = 6 + 1 = 7$	M1		
	$\frac{dy}{dt} = \frac{1}{7}$	A 1√		May be implied
	dx / 1	A1	3	OF
	$(y-1)=\frac{1}{7}(x-2)$	411	5	
	Total		8	

MPC3 (con	t) Solution	Marks	Total	Comments
7(a)		B1	1	
(b)		M1 A1 A1	3	Shape inverted V in all four quadrants Symmetrical about <i>y</i> axis Coordinates
(c)	$4 - 2x = x$ $4 - 2x - x - \frac{4}{4}$	M1		Attempt to solve
(d)	$4 - 2x - x \qquad x - \frac{1}{3}$ $4 + 2x = x \qquad x = -4$ $-4 < x < \frac{4}{3}$	A1 A1 M1 A1	3 2	And no others Either correct Other solution and no extras $SC -4 \le x \le \frac{4}{3}B1$
	Total		9	
8(a) (b)	$A(-1,\pi)$ $B\left(0,\frac{\pi}{2}\right)$ $\cos^{-1}x - 3x - 1 = 0$	B1 B1	2	
	f(0.1)=0.17 allow 0.2, 0.1 f(0.2)=-0.23 allow $-0.2Change of sign : root$	M1	2	Or comparing 'sides'
(c)	$x_1 = 0.1$ $x_2 = 0.1569 = 0.157$ $x_3 = 0.1378 = 0.138$	M1 A1	2	
	$x_4 = 0.144$	A1	3	
	Total		7	

MPC3 (con	t)			
Q	Solution	Marks	Total	Comments
9(a)(i)	$\int (4-e^{2x}) dx$			
		B1		4x
	$=4x-\frac{1}{2}e^{2x}(+c)$	D1	2	1 2r
	2	DI	2	${2}e^{$
(ii)	$\int \ln^2 \left[1 + \frac{1}{2x} \right]^{\ln^2}$			
	$\int_{0}^{0} = \begin{bmatrix} 4xe \\ 2 \end{bmatrix}_{0}^{0}$			
	$-\left[4\ln 2 - \frac{1}{2}e^{2\ln 2}\right] - \left[(0) - \frac{1}{2}(e^{0})\right]$	M1		Substitute both ln 2 and 0 correctly into
	$\begin{bmatrix} 4 m 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} (0) & 2 \\ 2 & 2 \end{bmatrix}$	1411		an integrated expression
				Construction
	$=4\ln 2 - 2 + \frac{1}{2}$			Convincing
	$-4\ln 2$ $\frac{3}{2}$	A1	2	AG
	$-4 m^2 - \frac{1}{2}$		-	
(b)(i)	x = 0	D1		
	y = 4 - 1 = 3	BI	1	
(ii)	At B , $y = 0$			
	$4 - e^{2x} = 0$	M1		Or reverse argument
	$e^{2x} = 4$	4.1	2	
(-)	$x = \ln 2$	AI	2	AG
(C)	$\frac{dy}{dt} = -2e^{2x}$	B1		
	dx $x = \ln 2$ Cradient = $2e^{2\ln 2}$	M1		$x = \ln 2$ into $k 2^{2x}$
	$x = \lim 2$, Gradient = $-2e$	1111		$x = m z \mod ke$
	o			
	Gradient normal = $\frac{1}{8} = \frac{1}{2e^{2\ln 2}}$	A1		OE
	Equation $y = \frac{1}{r} = \frac{1}{r} = \frac{1}{r} \ln 2$	A1	4	OE
	Equation $y = \frac{1}{8}x = \frac{1}{8}m^2$		•	
(d)	When $x = 0$			
	1 lm 2	M1		Attempt to integrate their line and
	$y = -\frac{1}{8}$ in 2			substitute $x = 0$, ln 2
	Area $\Lambda = \frac{1}{(\ln 2)^2}$ condone – ve sign	A1√		$\frac{1}{-}$ (their v)×ln 2
				2(
	= 0.05			
	Total area = $4 \ln 2 - \frac{3}{2} + \frac{1}{16} (\ln 2)^2 = 1.30$	A1	3	CSO
	AWRT			
	Total		14	
	Total		75	

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and	d is for method	and accuracy		
E	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

June 07

QSolutionMarksTotalCommentsI(a) $y = \ln x$ $\frac{dy}{dx} = \frac{1}{x}$ B11penalise + c once on I(a) or 2(a)(b) $y = (x+1) \ln x$ B11 $\frac{dy}{dx} = (x+1) \times \frac{1}{x} + \ln x$ M1A12(c) $y = (x+1) \ln x$ M1product rule $\frac{dy}{dx} = \frac{1}{x} + 1 + \ln x$ M1 $x = 1: \frac{dy}{dx} = \frac{1}{x} + 1 + \ln x$ $x = 1: \frac{dy}{dx} = \frac{1}{x} + 1 + \ln x$ $x = 1: \frac{dy}{dx} = \frac{1}{x} + 1 + 1 = 2$ M1substitute $x = 1$ into their $\frac{dy}{dx}$ Grad normal $= -\frac{1}{2}$ M1 $usc of m_1m_2 = -1$ $y = -\frac{1}{2}(x-1)$ A14OE $y = -\frac{1}{2}(x-1)^3$ or in expanded formB11allow $-4(1-x)^3$ M1 $(\pi) \int y^2 dx$ $\left(b)$ $V = 4(\pi) \left(\frac{4}{2}(x-1)^3 dx$ M1 $(\pi) \int y^2 dx$ $= \frac{3}{4}\pi \left(\frac{(x-1)^4}{\frac{1}{2}}\right)^2_2$ M1 $k(x-1)^4(\pi)$ or in expanded form $e^{-1}(81-1) = 80\pi$ A14CAO(c)TranslateF1 $(A1)$ $\begin{pmatrix} 1\\0\\\\ 0\\\\ 0\\\\ 0\\\\ 0\\\\ 0\\\\ 0\\\\ 0\\\\ 0\\\\ 0$	MPC3				
$ \begin{array}{ c c c c c c } 1(a) & y = \ln x & & & & & \\ \hline dy & = \frac{1}{x} & & & & & \\ \hline dy & = \frac{1}{x} & & & & \\ \hline dy & = \frac{1}{x} & & & & \\ \hline dy & = (x+1)\ln x & & & & \\ \hline dy & = (x+1)\ln x & & & & \\ \hline dy & = \frac{1}{x} + 1 + \ln x & & & \\ \hline x & = 1: & \frac{dy}{dx} = \frac{1}{x} + 1 + \ln x & & & \\ \hline x & x = 1: & \frac{dy}{dx} = \frac{1}{x} + 1 + \ln x & & \\ \hline dy & = \frac{1}{x} & & & \\ \hline dx & = \frac{1}{2} & & & \\ \hline dx & = \frac{1}{2} & & & \\ \hline y & = -\frac{1}{2}(x-1) & & & \\ \hline 1 & & & \\ \hline 1 & & & \\ \hline 1 & & \\ 1 & & \\ \hline 1 & & \\ 1 & & \\ \hline 1 & & \\ $	Q	Solution	Marks	Total	Comments
$\begin{vmatrix} \frac{dy}{dx} = \frac{1}{x} \\ (b) y = (x+1) \ln x \\ \frac{dy}{dx} = (x+1) \times \frac{1}{x} + \ln x \\ \frac{dy}{dx} = (x+1) \times \frac{1}{x} + \ln x \\ \frac{dy}{dx} = \frac{1}{x} + 1 + \ln x \\ x = 1: \frac{dy}{dx} = 1 + 1 = 2 \\ Grad normal = -\frac{1}{2} \\ y = -\frac{1}{2}(x-1) \\ y = -\frac{1}{2}(x-1) \\ (b) V = 4 \left(\pi\right) \frac{4}{2} \left(x-1\right)^3 dx \\ = \frac{1}{4} \left(x-1\right)^3 dx \\ (c) Total \\ x = 1: \frac{dy}{dx} = \frac{1}{2} \\ \frac{1}{2} \left(x-1\right)^3 dx \\ \frac{dy}{dx} = \frac{1}{2} \\ \frac{dy}{dx} \left(x-1\right)^4 \left(x-1\right)^3 dx \\ \frac{dy}{dx} = \frac{1}{2} \\ \frac{dy}{dx} \left(\frac{(x-1)^4}{4}\right)^2_{2} \\ \frac{dy}{dx} = \frac{1}{2} \\ d$	1(a)	$y = \ln x$			penalise + c once on 1(a) or 2(a)
$\frac{1}{4x} - \frac{1}{x}$ (b) $y = (x+1)\ln x$ $\frac{dy}{dx} = (x+1)x \frac{1}{x} + \ln x$ (c) $y = (x+1)\ln x$ $\frac{dy}{dx} = \frac{1}{x} + 1 + \ln x$ $x = 1: \frac{dy}{dx} = 1 + 1 = 2$ (c) $y = (x+1)\ln x$ $\frac{dy}{dx} = \frac{1}{x} + 1 + \ln x$ $x = 1: \frac{dy}{dx} = 1 + 1 = 2$ (f) $\frac{1}{y} = -\frac{1}{2}$ (g) $\frac{1}{y} = \frac{1}{2}$ (g) $\frac{1}$		dy _ 1	D1	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\frac{1}{dx} - \frac{1}{x}$	DI	1	
(b) $y = (x+1)\ln x$ $\frac{dy}{dx} = (x+1) \times \frac{1}{x} + \ln x$ $\frac{dy}{dx} = (x+1) \ln x$ $\frac{dy}{dx} = \frac{1}{x} + 1 + \ln x$ $x = 1: \frac{dy}{dx} = 1 + 1 = 2$ Grad normal $= -\frac{1}{2}$ $y = -\frac{1}{2}(x-1)$ (b) $V = 4(\pi) \frac{4}{2}(x-1)^3 dx$ $u = \pi \left[\frac{(x-1)^4}{4} \right]_2^4$ (c) $V = 4(\pi) \frac{4}{2}(x-1)^3 dx$ M1					
$\frac{dy}{dx} = (x+1) \times \frac{1}{x} + \ln x$ M^{1} A^{1} M^{1} A^{1} M^{1}	(b)	$y = (x+1)\ln x$			
$\frac{dx}{dx} = (x+1)x\frac{dx}{x} + \ln x$ $\frac{dy}{dx} = \frac{1}{x} + 1 + \ln x$ $x = 1: \frac{dy}{dx} = 1 + 1 = 2$ $Grad normal = -\frac{1}{2}$ $y = -\frac{1}{2}(x-1)$ $\frac{M1}{A1}$ $\frac{M1}{A1}$ $\frac{W}{A1} = \frac{1}{2}$ $\frac{M1}{A1}$ $\frac{W}{A1} = \frac{1}{2}$ $\frac{M1}{A1}$ $\frac{W}{A1} = \frac{1}{2}$ $\frac{W}{$		$dy = (x+1) \times \frac{1}{x} + \ln x$	M1		product rule
(c) $y = (x+1) \ln x$ $\frac{dy}{dx} = \frac{1}{x} + 1 + \ln x$ $x = 1: \frac{dy}{dx} = 1 + 1 = 2$ Grad normal $= -\frac{1}{2}$ $y = -\frac{1}{2}(x-1)$ M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1 M1 A1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M		$\frac{dx}{dx} = \frac{x+1}{x} + \frac{x}{x}$	A1	2	
(c) $y = (x+1) \ln x$ $\frac{dy}{dx} = \frac{1}{x} + 1 + \ln x$ $x = 1: \frac{dy}{dx} = 1 + 1 = 2$ Grad normal $= -\frac{1}{2}$ $y = -\frac{1}{2}(x-1)$ (b) $V = 4 (\pi) \frac{4}{2}(x-1)^3 dx$ $= \sqrt{\pi} \left[\frac{(x-1)^4}{\sqrt{4}} \right]_2^4$ $= \pi (81-1) = 80\pi$ (c) Translate $\begin{pmatrix} 1\\ 0 \end{pmatrix}$ Stretch (I) SF 2 (II) // y axis (III) (c) Total (c) Translate $\begin{pmatrix} 1\\ 0 \end{pmatrix}$ Stretch (I) SF 2 (II) // y axis (III) (c) Total (c) Total (c) Translate $\begin{pmatrix} 1\\ 0 \end{pmatrix}$ $V = 4 (\pi) \frac{4}{2} (2 - 1)^3 dx$ $V = 4 (\pi) \frac{4}{3} (\pi) \frac{4}{3}$					
$\frac{dy}{dx} = \frac{1}{x} + 1 + \ln x$ $x = 1: \frac{dy}{dx} = 1 + 1 = 2$ $Grad normal = -\frac{1}{2}$ $y = -\frac{1}{2}(x - 1)$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$	(c)	$y = (x+1)\ln x$			
$\frac{dx}{dx} = x^{-1} + \frac{dx}{dx}$ $x = 1: \frac{dy}{dx} = 1 + 1 = 2$ Grad normal $= -\frac{1}{2}$ M1 M1 M1 M1 M1 M1 M1 M2		$\frac{dy}{dt} = \frac{1}{2} + 1 + \ln r$			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\frac{dx}{dx} = \frac{dx}{x} + 1 + \frac{dx}{dx}$			
$\begin{aligned} x = 1: \frac{-2}{dx} = 1 + 1 = 2 & \text{Inf} & $		dv	M1		substitute $r = 1$ into their $\frac{dy}{dy}$
Image: Construction of the second system		$x=1: \frac{dy}{dx}=1+1=2$	1011		dx
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	2.64		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Grad normal $=-\frac{1}{2}$			use of $m_1 m_2 = -1$
$y = -\frac{1}{2}(x-1)$ A1 4 OE Total 7 2(a) $4(x-1)^3$ or in expanded form B1 1 allow $-4(1-x)^3$ (b) $V = 4(\pi) \int_2^4 (x-1)^3 dx$ M1 $(\pi) \int y^2 dx$ $= 4\pi \left[\frac{(x-1)^4}{4} \right]_2^4$ M1 $k(x-1)^4(\pi)$ or in expanded form correct substitution of limits into $k(x-1)^4$ (c) Translate E1 I OE (f) 0 $SF 2$ (II) M1 OE $M1$ I Image: Correct substitution of limits into $k(x-1)^4$ 0 (c) Translate E1 OE $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ Stretch (I) SF 2 (II) M1 Image: Correct substitution of III or III) $M1$ $A1$ 4 OE		2	AI		CSO
$y = -\frac{1}{2}(x-1)$ A1 4 OE Total 7 2(a) 4(x-1)^3 or in expanded form B1 1 allow -4(1-x)^3 (b) $V = 4 (\pi) \int_2^4 (x-1)^3 dx$ M1 (\pi) \int y^2 dx (\pi) \int y^2 dx $= \frac{1}{2} \pi \left[\frac{(x-1)^4}{\frac{1}{2}} \right]_2^4$ M1 (\pi) \int y^2 dx (x-1)^4 (\pi) or in expanded form correct substitution of limits into k(x-1)^4 (x-1)^4 = \pi(81-1) = 80\pi A1 4 CAO (c) Translate $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ Stretch (I) SF 2 (II) H1 A1 4 For I and (II or III) for I and (II or III) for I and II and III (\pi) I and II and II (\pi) I and II and III (\pi) I		1			
Total72(a) $4(x-1)^3$ or in expanded formB11allow $-4(1-x)^3$ (b) $V=4(\pi) \int_2^4 (x-1)^3 dx$ M1 $(\pi) \int y^2 dx$ $= \frac{1}{2} \pi \left[\frac{(x-1)^4}{\frac{3}{2}} \right]_2^4$ M1 $(x-1)^4(\pi)$ or in expanded form correct substitution of limits into $k(x-1)^4$ (c)TranslateE1 $\begin{pmatrix} 1\\ 0 \end{pmatrix}$ B1OEStretch (I)SF 2 (II)M1for I and (II or III) for I and II and IIITotal9		$y = -\frac{1}{2}(x-1)$	A1	4	OE
2(a) $4(x-1)^3$ or in expanded form (b) $V = 4 (\pi) \frac{4}{2} (x-1)^3 dx$ $= 4\pi \left[\frac{(x-1)^4}{4} \right]_2^4$ $= \pi (81-1) = 80\pi$ (c) Translate $\begin{pmatrix} 1\\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		Total		7	
(b) $V = 4 (\pi) \int_{2}^{4} (x-1)^{3} dx$ $= \frac{3}{4} \pi \left[\frac{(x-1)^{4}}{4} \right]_{2}^{4}$ $= \pi (81-1) = 80\pi$ (c) Translate $\begin{pmatrix} 1\\ 0 \end{pmatrix}$ Stretch (I) SF 2 (II) H H H H H H H H	2(a)	$4(x-1)^3$ or in expanded form	B1	1	allow $-4(1-x)^3$
(b) $V = 4 (\pi) \int_{2}^{4} (x-1)^{3} dx$ $= 4\pi \left[\frac{(x-1)^{4}}{4} \right]_{2}^{4}$ $= \pi (81-1) = 80\pi$ (c) Translate $\begin{pmatrix} 1\\0 \end{pmatrix}$ Stretch (I) SF 2 (II) // y axis (III) Mu Mu Mu Mu Mu Mu Mu Mu Mu Mu	()	· (·· · ·) · · · · · · · · · · · · · · ·			
(b) $V = 4 (\pi) \int_{2}^{1} (x-1)^{3} dx$ $= 4\pi \left[\frac{(x-1)^{4}}{4} \right]_{2}^{4}$ $= \pi (81-1) = 80\pi$ (c) Translate $\begin{pmatrix} 1\\0 \end{pmatrix}$ Stretch (I) SF 2 (II) // y axis (III) M1 M1 M1 M1 M1 M1 M1 M1 M1 M1		4			
$= 4\pi \left[\frac{(x-1)^4}{4} \right]_2^4$ $= \pi (81-1) = 80\pi$ (c) Translate $\begin{pmatrix} 1\\0 \end{pmatrix}$ Stretch (I) SF 2 (II) $H = \frac{1}{4} \left[\frac{1}{4} \right]_2^4$ $= \pi (81-1) = 80\pi$ $H = \frac{1}{4} \left[\frac{1}{4} \right]_2^4$ $H = \frac{1}{$	(b)	$V = 4 (\pi) \int (x-1)^3 dx$	M1		$(\pi)\int y^2 dx$
$ \begin{vmatrix} x \\ z \\$		2			
$= \frac{4}{\pi} \left[\frac{(x-1)^4}{\frac{4}{3}} \right]_2^1$ $= \pi (81-1) = 80\pi$ (c) Translate $\begin{bmatrix} 1\\0 \end{bmatrix}$ $B1$ OE $Stretch (I) SF 2 (II)$ $\frac{1}{y \text{ axis (III)}}$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$		- - - - - 4	M1		$k(x-1)^4(\pi)$ or in expanded form
$(c) \text{Translate} \qquad (c) \text$		$=$ $\exists \pi \left \frac{(x-1)^4}{2} \right ^2$	m1		compatibility of limits into
$rac{1}{2}$ $rac{1}{2}$ $k(x-1)$ $= \pi(81-1) = 80\pi$ A14CAO(c)TranslateE1 4 $\begin{pmatrix} 1\\0 \end{pmatrix}$ B1OEStretch (I)SF 2 (II)M1for I and (II or III)// y axis (III)A14for I and II and III		$\begin{bmatrix} \mathbf{A} \end{bmatrix}_2$	1111		correct substitution of limits into $1/4$
$= \pi(81-1) = 80\pi$ A14CAO(c)TranslateE1 $=$ $\begin{pmatrix} 1\\ 0 \end{pmatrix}$ B1OEStretch (I)SF 2 (II)M1for I and (II or III)// y axis (III)A14for I and II and III					k(x-1)
(c)TranslateE1OE $\begin{pmatrix} 1\\ 0 \end{pmatrix}$ B1OEStretch (I)SF 2 (II)M1for I and (II or III)// y axis (III)A14for I and II and III		$=\pi(81-1)=80\pi$	A1	4	CAO
(c)TranslateE1 I $\begin{pmatrix} 1\\ 0 \end{pmatrix}$ B1OEStretch (I)SF 2 (II)M1for I and (II or III)// y axis (III)A14for I and II and III					
Image: 1 bit of the second system Image: 1 bit of the second system B1 OE Image: Stretch (I) SF 2 (II) M1 for I and (II or III) // y axis (III) A1 4 for I and II and III	(c)	Translate	E1		
Image: black of the second strength of the second s		(1)			
Stretch (I) SF 2 (II) M1 for I and (II or III) // y axis (III) A1 4 for I and II and III			B1		OE
// y axis (III) NII Ion F and (If of III) Total 9		Stretch (I) SF 2 (II)	M1		for Land (II or III)
Total 9		// v axis (III)	A1	4	for I and II and III
		Total		9	

MPC3 (con	t)			
Q	Solution	Marks	Total	Comments
3(a)	$\csc x = 2$ $\Rightarrow \sin x = \frac{1}{2}$	M1		30° scores M1 implied
	x = 30, 150	A1	2	and no extras in range
(b)(i)	1	B1	1	
(ii)		M1 A1	2	all positive, 2 U shapes minima consistent > 0, not intersecting with each other or <i>y</i> -axis
(c)	x = 30, 150, 210, 330	B1F		3 correct values from their (a), which must be θ ,180 $-\theta$
		B1	2	all correct and no extras in range
	Total		7	

MPC3 (cont					
Q	Solı	ıtion	Marks	Total	Comments
4(a)		У			
	x_0 1	3	D1		w vieluos DI
	x, 1.25	3.948(2)	DI		
	x. 1.5	5,196(2)	B1		(4 +) y values correct
	r = 1.75	6.838(5)			
	x_3 1.75	0			
)			
	$A = \frac{1}{3} \times \frac{1}{4} (3 + 4 \times 3.94)$	182+2×5.1962			
		$+4 \times 6.8385 + 9)$	M1		Simpson's rule
	= 5.46		A1	4	CAO
	$c()$ a^{r} a				
(b)(1)	$f(x) = 3^{x} - x - 3$				
	f(0.5) = -1.77 cha	nge of sign ∴ root	M1A1	2	
	f(1.5) = 0.696	0 0			
(ii)	$3^x = x + 3$		M 1		
	$\ln 3^x = \ln \left(x + 3 \right)$		IVI I		correct use of logs
	$x\ln 3 = \ln(x+3)$				
	$\ln(x+3)$		A 1	2	A C
	$x = \frac{1}{\ln 3}$		AI	2	correct with no mistakes; AG
	- -				
(iii)	$x_1 = 0.5$				
	$(x_2 = 1.14)$		M1	2	
	$x_3 = 1.29 = 1.3$		Al	2	CAO
(iv)		y = x			
		1			
		$\lim_{x \to \infty} \ln (x+3)$			
	T	In 3	M1		staircase
	1		A 1	2	
			AI	2	x_2, x_3 correct and labelled on x-axis
	1				
	K. M. 4.				
		Tatal		12	
		I Utal		14	

MPC3 (cont			r	
Q	Solution	Marks	Total	Comments
5(a)	$f(x) \ge 0$ allow $y \ge 0$	M1		> 0 or $f \ge 0$ or ≥ 0
		A1	2	
(b)(i)	$\sqrt{\frac{1}{x}-2}$	B1	1	
(ii)	$\frac{1}{x} - 2 = 1$	M1		squaring their (b)(i) in an equation
	$\frac{1}{r} = 3$ OE	A1		
	$x = \frac{1}{3}$	A1	3	CSO
(c)	$y = \sqrt{x-2}$			
	$y^2 = x - 2$	M1		attempt to isolate; condone 1 slip
	$x^2 = y - 2$	M1		reverse $x \Leftrightarrow y$
	$y = x^2 + 2$	A1	3	
	Total		9	
6(a)	$\int x e^{-x} dx$			
	$u = x$ $dv = e^{5x}$	M1		integrate one term, differentiate one term
	$du = 1 v = \frac{1}{5}e^{5x}$	A1		
	$\int = \frac{1}{5} x e^{5x} - \int \frac{1}{5} e^{5x} dx$	A1		
	$=\frac{1}{5}xe^{5x}-\frac{1}{25}e^{5x}(+c)$	A1	4	
(b)(i)	$u = x^{\frac{1}{2}}$			
	$du = \frac{1}{2}x^{-\frac{1}{2}} dx$	M1		
	$\int = \int \frac{1}{1+u} \times 2 \mathrm{d}u$	A1	2	correct with no errors; AG
(ii)	$\int_{1}^{9} dx = \int_{1}^{3} \frac{2}{1+u} du$	ml		correct limits used in correct expression, ignoring k
	$= \left[2\ln\left(1+u\right)\right]_{1}^{3}$	M1		for $k \ln(1+u)$
	$= 2 \ln 4 - 2 \ln 2$	A1	3	ISW OE
	(= III 4) Total		9	
	IUtal	1	,	

MPC3 (con	t)			
Q	Solution	Marks	Total	Comments
7(a)(i)	$y = \left(x^2 - 3\right)e^x$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(x^2 - 3\right)\mathrm{e}^x + 2x\mathrm{e}^x$	M1 A1	2	product rule
(ii)	$\frac{d^2 y}{dx^2} = (x^2 - 3)e^x + 2xe^x + 2xe^x + 2e^x$	M1 A1	2	product rule from their $\frac{dy}{dx}$
(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$			
	$\Rightarrow \mathrm{e}^{x} \left(x^{2} + 2x - 3 \right) = 0$	M1		$e^{x} f(x) = 0$ from $\frac{dy}{dx} = 0$
	$e^{x}(x+3)(x-1)=0$	m1		attempt at factorising or use of formula
	$\therefore x = -3, 1$	A1		first correct solution
		A1	4	second correct solution, and no others SC No working shown: x = -3 B2, $x = 1$ B2
(ii)	$x = -3 y'' = -4e^x \max(-0.2)$	M1		Condone slip
	$x = 1$ $y'' = 4e^x \min$ (10.9)	A1	2	
	Total		10	
8(a)	$\tan x \ (+ c)$	B1	1	
(b)	$f(x) = \frac{\cos x}{\sin x}$			$+\sin^2 r + \cos^2 r$
	$f'(x) = \frac{1}{\sin^2 x}$	M1 A1		quotient rule $\frac{1}{\sin^2 x} \sin^2 x$
	$=\frac{-1}{\sin^2 x}$	A1		use of $\sin^2 x + \cos^2 x = 1$
	$=-\csc^2 x$	A1	4	AG CSO
				Special cases
				$f(x) = \frac{\cot x}{1}$
				$f'(x) = \frac{1 \times -\csc^2 x - \cot x \times 0}{1^2} M1$
				$=-\csc^2 x \qquad A1 \qquad (\max 2/4)$
				$f(x) = \frac{1}{\tan x}$
				$f'(x) = \frac{\tan x \times 0 - 1 \times \sec^2 x}{\tan^2 x} \qquad M1 A1$
				$=\frac{-\sec^2 x}{\tan^2 x}$
				$=\frac{-1}{\sin^2 x} = -\csc^2$ A1 (max 3/4)

IPC3 (cont				1
Q	Solution	Marks	Total	Comments
(c)	LHS = $\tan^2 x + \cot^2 x + 2 \tan x \cot x$	M1		expanding
	$=\tan^2 x + 1 + \cot^2 x + 1$	M1		correct use of trig identities
	$=\sec^2 x + \csc^2 x$	A1	3	CSO
	=RHS			
(d)	$\int (\tan x + \cot x)^2 \mathrm{d}x = \int \sec^2 x + \csc^2 x \mathrm{d}x$	M1		use of identity
	$= [\tan x - \cot x]_{0.5}^{1}$	M1 A1		$\pm \tan x \pm \cot x \text{ OE}$
	= 0.91531.2842			
	= 2.2	A1	4	AWRT
	Total		12	
	TOTAL		75	

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General
Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for	or accuracy			
В	mark is independent of M or m marks and is	for method and a	accuracy		
E	mark is for explanation				
\sqrt{or} ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

PMT

MPC3		I	-	
Q	Solution	Marks	Total	Comments
1(a)(i)	$y = (2x^2 - 5x + 1)^{20}$			
	dy (12)19	M1		chain mile $20(x)^{19} f(x)$
	$\frac{dy}{dx} = 20(2x^2 - 5x + 1)^{-1}(4x - 5)$ OE		2	chain rule $20()$ $1(x)$
	ů.	AI	2	with no further incorrect working
(ii)	$y = x \cos x$			
(11)	dv	M1		product rule $\pm r \sin r \pm \cos r$
	$\frac{dy}{dx} = -x \sin x + \cos x$	A1	2	CSO
	x^3			
(D)	$y = \frac{1}{x-2}$			
	$dy (r-2)3r^2 - r^3 \times 1$	M1		$\pm vu' \pm uv'$
	$\frac{dy}{dx} = \frac{(x-2)3x - x \times 1}{(x-2)^2}$	IVIII		quotient rule $\frac{1}{(x-2)^2}$
	$dx \qquad (x-2)^2$	A1		condone missing brackets
	$3x^3 - 6x^2 - x^3$			
	$=$ $(x-2)^2$			
	$2x^{2}(x-3)$			
	$=\frac{1}{(x-2)^2}$	A1	3	CSO
	Total		7	
2(a)	$\cot x = 2 \Longrightarrow \tan x = 0.5$	M1		
	<i>x</i> =0.46, 3.61	A1	2	AWRT; no others within range
(b)	$\csc^2 x = \frac{3\cot x + 4}{3\cot x + 4}$			
(~)	2			
	$2(1+\cot^2 x) = 3\cot x + 4$	M1		Correct use of $\csc^2 x = 1 + \cot^2 x$
	$(2\cot^2 x - 3\cot x + 2 - 4 = 0)$			
	$2 \cot^2 r - 3 \cot r = 2 - 0$	Λ 1	C	AG: correct with no cling from line
	$2 \cot x - 3 \cot x - 2 = 0$	AI	Z	with no fractions
	$(2 \cot x + 1)(\cot x - 2)(-0)$	M 1		Attempt to colve
(C)	$(2 \cos x + 1)(\cos x - 2)(-0)$	111		Attempt to solve
	$\cot x = -\frac{1}{2}, 2$	A1		
	$\tan x = -2, 0.5$			
	x = 0.46, 3.61, 2.03, 5.18	B1		2 correct Allow 3.6(0)
		B1	4	4 correct (with no extras in range) AWRT
				SC Degrees
				26.57 206.57
				116 57 296 57 B1 for 2 correct
	Tatal		Q	110.57, 270.57
	1 otai		ð	

MPC3 (cont	PC3 (cont)						
Q	Solution	Marks	Total	Comments			
3 (a)	$x + (1 + 3x)^{\frac{1}{4}} = 0$						
	f(-0.32) = 0.1						
	f(0.32) = 0.01	M1		AWRT; allow + ve, -ve			
	Change of sign : $-0.33 < r < -0.32$	A 1	2				
	Change of sign $\therefore = 0.55 < x < = 0.52$	AI	Z				
	1						
(D)	$x = -(1+3x)^4$						
	$x^4 = 1 + 3x$	M1		Attempt to isolate x^4			
	$\frac{x^4 - 1}{x^4} = x$	A1	2	AG			
	3						
(c)	$x_{\rm c} = -0.3$						
	$(x_2 = -0.331)$ AWRT	M1					
	$(x_2 = -0.329)$ AWRT	A1					
	$x_4 = -0.329$	A1	3				
	Total		7				
4(a)	all (real) values	B1	1	No x in answer, unless f (x)			
(b)(i)	$fg(x) = \left(\frac{1}{x}\right)^3$	B 1	1	ISW			
	(x-3)	DI	1				
(ii)	$\left(\frac{1}{}\right)^{2} = 64$						
	(x-3)						
	$\frac{1}{1} = 4$	M1		3√			
	x-5						
	$x - 3 = \frac{1}{4}$	M1		Invert			
	-2^{1}						
	$x = 5\frac{1}{4}$	A1	3				
	1						
(c)(i)	$y = \frac{1}{x - 2}$						
	x - 5						
	$x = \frac{1}{n-2}$	M1		Swap x and y			
	<i>y</i> – 5						
	x(y-3)=1						
	xy - 3x = 1	M1		attempt to isolate			
	$y = \frac{1+3x}{2} = g^{-1}(x) \text{ or } \frac{1}{2} + 3$	A1	3				
	<i>x x</i>						
(;;)	$(real values) (g^{-1}(r)) \neq 3$	R1	1				
(II)	Total	DI	1				
	lotal		<u>у</u>				

MPC3 (cont) Solution	Monka	Tatal	Commente
		Marks	Total	Comments
5(a)(i) (ii)	$y = 2x^{2} - 8x + 3$ $\left(\frac{dy}{dx}\right) = 4x - 8$ $\int_{-4}^{6} \frac{x - 2}{2x^{2} - 8x + 2} dx$	B1	1	
	$=\frac{1}{4} \left[\ln \left 2x^2 - 8x + 3 \right \right]_4^6$	M1A1		M1 for $k \ln (2x^2 - 8x + 3)$; allow $k \ln u$
	$=\frac{1}{4}[\ln 27 - \ln 3]$	m1		Correct substitution into $k \ln (2x^2 - 8x + 3)$ or 3, 27 into $k \ln u$
	$=\frac{1}{4}\ln 9$ $=\frac{1}{2}\ln 3$	A1	4	
(b)	$\int x\sqrt{(3x-1)} \mathrm{d}x$	D1		OF
	$u = 5x - 1 \qquad du = 5dx$ $\int = \left(\frac{1}{9}\right) \int \left(u^{\frac{3}{2}} + u^{\frac{1}{2}}\right) (du)$	M1		$\int 2 \text{ terms in } u \text{ with rational indices}$
	$= \left(\frac{1}{9}\right) \left[\frac{u^{\frac{5}{2}}}{\frac{5}{2}} + \frac{u^{\frac{3}{2}}}{\frac{3}{2}}(+c)\right]$	A1F		Must be 2 terms with correct indices $\left(\text{only ft for } x = \frac{u-1}{3}\right)$
	$=\frac{2}{45}(3x-1)^{\frac{5}{2}}+\frac{2}{27}(3x-1)^{\frac{3}{2}}+c$	A1	4	CSO OE
	Total		9	
6(a)		M1 A1	2	Correct shape Vertex
(b)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 B1		Correct <i>x</i> values \geq 3 correct <i>y</i> values
	$\frac{0.55}{0.45} = \frac{2.510}{2.299}$ $\int \approx 0.1 \times \sum y \qquad (\sum y = 15.949)$ $= 1.59$	B1 A1	4	correct <i>h</i> used correctly
	Total		6	

Q	Solution	Marks	Total	Comments
7(a)	Stretch (I)			
	Scale factor $\frac{1}{2}$ (II)	M1		I + (II or III)
	parallel to <i>x</i> -axis (III)	A1		All correct
	(Or scale factor 4 parallel to y-axis)			
	Translation	M1		
	$\begin{bmatrix} 0\\ -5 \end{bmatrix} \qquad \text{OE}$	A1	4	
	Alternatives			
	translate $\begin{pmatrix} 0\\ -\frac{5}{4} \end{pmatrix}$, stretch sf 4 y-axis			Mark translation first. Mark stretch as above, but relative to their translation.
	translate $\begin{pmatrix} 0 \\ -5 \end{pmatrix}$, stretch sf $\frac{1}{2} \parallel x$ -axis			
		M1		Modulus graph symmetrical about y-axis
(b)	5	A1		left of $-\frac{\sqrt{5}}{2}$ and right of $\frac{\sqrt{5}}{2}$
	$\frac{\sqrt{\left(-\sqrt{5}{2}\right)}}{\left(-\sqrt{5}{2}\right)} \qquad x$	A1	3	(0, 5), cusps drawn and no straight lines between cusps
(c)(i)	$4x^2 - 5 = 4$			
	$4x^2 = 9$			
	$x = \pm \frac{3}{2}$ OE	B1		
	$4x^2 - 5 = -4$	M1		$16x^4 - 40x^2 + 9 = 0$
	$4x^2 = 1$	A 1	2	
(**)	$x = \pm \frac{1}{2}$	AI	3	
(11)	$x \le -\frac{3}{2}, x \ge \frac{3}{2}$	B1F		2 correct statements
	$-\frac{1}{2} \le x, x \le \frac{1}{2}$	B1F	2	4 correct statements
				SC c(ii)
	Total		12	1 mark penalty for strict inequalities

Q	Solution	Marks	Total	Comments
8 (a)	$e^{-2x} = 3$			
	$-2x = \ln 3$	M1		
	$x = -\frac{1}{2}\ln 3$	A1	2	OE ISW
(b)	$\int x e^{-2x} dx$			
	$u = x$ $\frac{\mathrm{d}v}{\mathrm{d}x} = \mathrm{e}^{-2x}$			
	$\frac{\mathrm{d}u}{\mathrm{d}x} = 1$ $v = -\frac{1}{2}\mathrm{e}^{-2x}$	M1		differentiating and integrating
	$\int \frac{dx}{dx} = -\frac{1}{2} x e^{-2x} + \int \frac{1}{2} e^{-2x} (dx)$	m1		correct subs of their values into parts
	$J = \frac{1}{2} x + J \frac{1}{2} c $ (ax)	A1		formula
	$=-\frac{1}{2}xe^{-2x}-\frac{1}{4}e^{-2x}+c$	A1	4	No further incorrect working
(c)(i)	$y = e^{-2x} + 6x$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\mathrm{e}^{-2x} + 6 = 0$	M1		$k\mathrm{e}^{-2x}+6=0$
	$\frac{\mathrm{d}y}{\mathrm{d}y} = 0 \Longrightarrow -2(\mathrm{e}^{-2x} - 3) = 0$			
	dx (/			
	$x = -\frac{1}{2}\ln 3$	A1		OE
	$y = 3 + 6\left(-\frac{1}{2}\ln 3\right)$	M1		Correct substitute of their valid x
	$=3-3\ln 3$	A1	4	OE ISW
(ii)	$\frac{d^2 y}{dx^2} = 4e^{-2x} \int = 12$	M1		Other methods need justification
	L > 0			Allow error in $\frac{d^2 y}{dx^2}$ or x-value, but not
				both
	.:. minimum	A1	2	
(iii)	$(V) = \pi \int_{0}^{1} y^{2} dx = (\pi) \int_{0}^{(1)} (e^{-2x} + 6x)^{2} (dx)$	M1		Either
	$= (\pi) \int_{0}^{(1)} \left(e^{-4x} + 12xe^{-2x} + 36x^{2} \right) dx$	B1		Correct expansion
	$\begin{bmatrix} & (0) \\ & & \end{bmatrix}$	A1		3 correct terms; $(-6), (-3)$ correct or
	$= (\pi) \left[-\frac{1}{4} e^{-4x} - 6x e^{-2x} - 3e^{-2x} + 12x^3 \right]_{(0)}$	Δ1		$12 \times \text{their (b)}$
	$=\pi \left[\left(-\frac{1}{4}e^{-4} - 9e^{-2} + 12 \right) - \left(-\frac{1}{4} - 3 \right) \right]$			
	$=\pi \left[15\frac{1}{4} - 9e^{-2} - \frac{1}{4}e^{-4} \right]$			
	$ \begin{bmatrix} 4 & 4 \\ -44.1 \end{bmatrix} $	B1	5	AWRT
	Total		17	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright $\ensuremath{\textcircled{O}}$ 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for	or accuracy			
В	mark is independent of M or m marks and is	for method and a	accuracy		
E	mark is for explanation				
$\sqrt{100}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3				
Q	Solution	Marks	Total	Comments
1 (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5(3x+1)^4 \times 3$	M1		$k(3x+1)^4$
	$=15(3x+1)^4$	A1	2	with no further errors (w.n.f.e)
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{3x+1}$	M1		$\frac{k}{3x+1}$
		A1	2	w.n.f.e
(c)	$\frac{dy}{dx} = (3x+1)^5 \times \frac{3}{3x+1} + \ln(3x+1) \times 15(3x+1)^4$	M1 A1	3	product rule $uv' + u'v$ (from (a) and (b)) either term correct
		AI	5	CSO with no further citors
	$\left[=(3x+1)^{+}\left[3+15\ln(3x+1)\right]\right]$			
	$=3(3x+1)^{4}[1+5\ln(3x+1)]$			
	Total		7	
2(a)	$x = \cos^{-1}\frac{1}{3}$	M1		PI
	$= 1.23, 5.05$ (0.39 π , 1.61 π)	A1,A1	3	AWRT (-1 for each error in range) SC 70.53, 289.47 B1
(b)	$\sec^2 x - 1 = 2 \sec x + 2$	M1		use of $\sec^2 x = 1 + \tan^2 x$
()	$\sec^2 x - 2\sec x - 3 = 0$	A1	2	AG: CSO
				-,
(c)	$\sec^2 x - 2\sec x - 3 = 0$			
	$(\sec x - 3)(\sec x + 1) = 0$	M1		attempt to solve
	$\cos x = \frac{1}{3} \text{ or } -1 \qquad \text{o.e}$	A1		
	x = 1.23, 5.05,	B1f		(2 answers in range from (a)) AWRT
	3.14 (π)	B1	4	all correct and no extras in range
				SC 70.53, 289.47, 180 B1
	Total		9	

(Extra +c penalised once throughout paper)

M	MPC3 (cont)						
Q	Solution	Marks	Total	Comments			
3(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -x2\sin 2x + \cos 2x$	M1 A1	2	product rule $kx \sin 2x \pm \cos 2x$ no further incorrect working			
(b)(i)	$-2\alpha\sin 2\alpha + \cos 2\alpha = 0$	M1		replacing $x = \alpha$ and writing equation equal to zero (at any line)			
	$2\alpha \sin 2\alpha = \cos 2\alpha$ $2\alpha \tan 2\alpha = 1$ either						
	$2\alpha \tan 2\alpha - 1 = 0$	A1	2	AG; CSO			
(ii)	f(0.5) = -0.6 awrt o.e.	M1		(0.9's unsubstantiated scores M0)			
	Change of sign $\therefore 0.4 < \alpha < 0.5$	A1	2				
(iii)	$2x \tan 2x = 1$						
	$\tan 2x = \frac{1}{2x}$ either $2x = \tan^{-1}\left(\frac{1}{2x}\right)$						
	$(2x)$ $x = \frac{1}{2} \tan^{-1} \left(\frac{1}{2x} \right)$	B1	1	AG; CSO			
(iv)	$x_1 = 0.4$						
	$x_2 = 0.4480$ $x_1 = 0.4200$	M1		$x_2 = 25.7$			
	= 0.42	A1	2				
(c)	$y = x \cos 2x$						
		M1		$\left. \begin{array}{c} \text{differentiate one term} \\ \text{integrate one term} \end{array} \right\} \text{must be } k \sin 2x$			
	usin Du sin Du	m1		correct substitution of their values into parts formula using $u = x$			
	$\int = \frac{x \sin 2x}{2} - \int \frac{\sin 2x}{2} (dx)$						
	$= \left[\frac{x\sin 2x}{2} + \frac{\cos 2x}{4}\right]_{(0)}^{(0,5)}$	A1					
	$= \left(\frac{\sin 1}{4} + \frac{\cos 1}{4}\right) - \left(\frac{\cos 0}{4}\right)$	m1	-	correctly substituting values from previous 2 method marks			
	= 0.0954 Total	AI	<u> </u>	AWKI			

MPC3	(cont)
------	--------

Q	Solution	Marks	Total	Comments
4 (a)	$f(x) \ge 0$	B1	1	allow $f \ge 0, y \ge 0, \ge 0$
(b)(i)	$y = \frac{1}{2x - 3}$ $x = \frac{1}{2y - 3}$ $x(2y - 3) = 1$ $2xy - 3x = 1$ $2xy = 1 + 3x$	M1	-	swap x and y
	1+3x			
	$y = \frac{1+3x}{2x} = g^{-1}(x)$ o.e.	A1	3	w.n.f.e
(11)	$ \begin{pmatrix} g & (x) \end{pmatrix} \neq \frac{1}{2} $	B1	1	
(c)	$\left(\frac{1}{2x-3}\right) = 9$	B1		
	$2x - 3 = \pm \frac{1}{3}$	M1		square root and invert (condone missing \pm) alternative: attempt to solve a quadratic that comes from $4x^2 - 12 + 9 = \frac{1}{9}$ o.e.
	$x = \frac{5}{3}, \frac{4}{3}$ o.e.	A1	3	
	Total		8	

Alternative

4(b)(i)	$x \to \boxed{\times 2} \to \boxed{-3} \to \boxed{\text{divide into1}} \to y$		
	$\frac{1}{2y} + \frac{3}{2} \leftarrow \div 2 \leftarrow \div 3 \leftarrow \texttt{divide into1} \leftarrow y$		
	$\frac{1}{y} + 3$		
	M1		

Q	Solution	Marks	Total	(Comments
5(a)(i)					
		B1		shape	
	(0, b) (a, 0) x	B1	2	coordinates	
(ii)	y •				
	(4,0)	B1		shape	
	(0, -2b)	B1	2	coordinates	
(b)(i)	Translation	M1			OR I stretch M1 I +
	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	A1			(II or III) II SF 4 III // y-axis A1 (I + II + III)
	Stretch I	M1		I+(II or III)	Translation M1
	SF 4 II // y-axis III	A1		I + II + III	$\begin{bmatrix} -1 \\ -2 \end{bmatrix} \qquad \begin{array}{c} A1 \\ B1 \end{array}$
	Translation $\begin{bmatrix} 0\\ -2 \end{bmatrix}$	B1		both	
	All correct and no mistakes on order etc Alternative:	A1	6		All correct A1
	$y = 4\ln(x+1) - 2 = 4\left[\ln(x+1) - \frac{1}{2}\right]$	(B1)			
	Translation	(M1)			
	$\begin{bmatrix} -1\\ -\frac{1}{2} \end{bmatrix}$	(A1)			
	Stretch I	(M1)		I+(II or III)	
	SF 4 II // y-axis III All correct and no mistakes on order etc	(A1) (A1)	(6)	I + II + III	

Q	Solution	Marks	Total	Comments
5(b)(ii)	$y = 4\ln\left(x+1\right) - 2$			
	$x = 0 \qquad y = -2$	B1		
	y = 0			
	$4\ln(x+1) = 2$			
	$\ln\left(x+1\right) = \frac{1}{2}$	M1		isolate $\ln(x+1) = \operatorname{or} (x+1)^4$
	$x+1=e^{\frac{1}{2}}$	A1		$x+1=e^k$
	$x = e^{\frac{1}{2}} - 1$ o.e.	A1	4	CSO isw
	Total		14	
6(a)	$(-3x+1)^{\frac{1}{2}}$			
U (a)	$y = (e^{-x} + 1)^2$			
	$\frac{dy}{dx} = \frac{1}{2} (e^{3x} + 1)^{-\frac{1}{2}} \times 3e^{3x}$	M1		$\frac{1}{2}(e^{3x}+1)^{-\frac{1}{2}}$
		A1		e^{3x}
		A1		$\frac{3}{-}$ (allow $\frac{1}{-} \times 3$) w.n.f.e
	$x = \ln 2$:			2 2
	$\frac{dy}{dx} = \frac{3}{2} \left(e^{\ln 8} + 1 \right)^{-\frac{1}{2}} \times e^{\ln 8}$	M1		correct substitution into their $\frac{dy}{dx}$
				(must use $\ln 8$ or $\ln 2^3$)
	$=\frac{3}{2}\times\frac{1}{3}\times8$			
	= 4	A1	5	
(b)	x y			
	0.25 1.765(5)			
	$\begin{array}{c cccc} 0.75 & 3.238(5) \\ \hline 1.25 & (.507(1)) \\ \end{array}$	B1		correct <i>x</i> values
	$\frac{1.25}{1.75}$ $\frac{0.397(1)}{13.84(1)}$	B1		3 or 4 correct v values 4 s.f. or better
	$\int = 0.5 \times \sum y$ P.I	M1		
	= 12.7	Δ1	4	sc 12.7 with no working $2/$
(0)	$v = \pi \int v^2 dx$	111		·······························
(C)	$=(\pi) \int (e^{3x} + 1) (dx)$	M1		
	$(1) \int (2 + 1) (4x)$	WII		
	$= (\pi) \left\lfloor \frac{1}{3} e^{3x} + x \right\rfloor_{(0)}$	A1		$ke^{3x} + x$
	$= \left(\pi\right) \left[\left(\frac{1}{3}e^{6} + 2\right) - \left(\frac{1}{3}e^{0} + 0\right) \right]$	m1		correct substitution into f $(\int e^{3x})$
	$=\pi\left[\frac{1}{3}e^{6}+\frac{5}{3}\right]$	A1	4	CSO
	$\left(=\frac{\pi}{3}(e^6+5)\right)$			
	Total		13	
с <u> </u>			i	

Q	Solu	ition		Marks	Total	Comments
7(a)	$y = \frac{\sin \theta}{2}$					
	$\cos\theta$	Q(ain Q)		N/1		$1 \cos^2 \theta + \sin^2 \theta$
	$\frac{dy}{d\theta} = \frac{\cos\theta\cos\theta - \sin\theta}{\cos^2\theta}$	$\frac{10(-\sin\theta)}{2}$		MI A1		$\frac{\pm\cos^2\theta}{\cos^2\theta}$
		7				
	$=\frac{1}{\cos^2\theta}$		o.e.			$(1+\tan^2\theta)$
	$=\sec^2\theta$			A1	3	AG; CSO
	$r = cin \theta$					
(0)	$\lambda = \sin \theta$	OK LHS = sin A				
	$x^2 = \sin^2 \theta$	$\frac{\sin\theta}{\sqrt{1-\sin^2\theta}}$				
		$\sin \theta$		M1		$1 - \frac{1}{2} + $
	$\cos^2\theta = 1 - x^2$	$=\frac{1}{\cos\theta}$		IVI I		use of $\cos^2 \theta + x^2 = 1$
	$\tan \theta = \frac{\sin \theta}{\cos \theta}$					
	x					
	$=\frac{1}{\sqrt{1-x^2}}$	$= \tan \theta$	AG	A1	2	AG; CSO
(c)	$\int \frac{1}{3} dx$					
	$(1-x^2)^{\overline{2}}$					
	$x = \sin \theta$					
	$dx = \cos\theta d\theta$		o.e.	M1		$\frac{dx}{dt} = \pm \cos \theta$
	$c = c \cos \theta (d\theta)$					d
	$\int = \int \frac{\cos \theta (u \theta)}{(1 - \frac{1}{2} - \frac{3}{2})^{\frac{3}{2}}}$			m1		all in terms of θ
	$(1-\sin^2\theta)^2$					
	$=\int \frac{\cos\theta}{3} (\mathrm{d}\theta)$			Δ 1		
	$(\cos^2 \theta)^{\overline{2}}$			71		
	$= \int \sec^2 \theta (\mathrm{d}\theta)$			A1		
	$= \tan \theta$					
	$=\frac{x}{\sqrt{1-x^2}}$ (+c)			A1	5	CSO including $d\theta$'s
	$VI - \lambda$		Total		10	
		Т	TOTAL		75	

Alte	rnative		
7(a)	$y = \frac{\tan \theta}{1}$		
	$\frac{\mathrm{d}y}{\mathrm{d}y} = \frac{1\mathrm{sec}^2\theta - 0}{2}$	M1	
	$d\theta = 1^2$	AI	
	$=\sec^2\theta$	A1	

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3				
Q	Solution	Marks	Total	Comments
1	$\begin{array}{ccc} x & y \\ 1 & 0.5 \\ 3 & 0.366(0) \end{array}$	B1		x values and no extra values
	5 0.309(0) 7 0.274(3) 9 0.25	B1		4+ correct y values or $\frac{1}{1+\sqrt{3}}$ etc
	$\int = \frac{1}{3} \times 2 \times \begin{bmatrix} (0.5 + 0.25) + \\ 4(0.3660 + 0.2743) + 2(0.3090) \end{bmatrix}$	M1		Correct application of Simpson's rule for their <i>x</i> values (<i>x</i> odd)
	= 2.62	A1	4	CSO must be 3sf
	Total		4	
2	$V = (\pi) \int y^2 \mathrm{d}x$			
	$= (\pi) \int (x-2)^3 dx$	M1		
	$= (\pi) \left[\frac{(x-2)^6}{6} \right]_3^4$	A1		limits not required
	$=(\pi)\left(\frac{2^6}{6}-\frac{1}{6}\right)$	m1		correct substitution into $(\pi)k(x-2)^6$
	$=10.5\pi$	A1	4	allow equivalent fraction $\left(\frac{63}{6}\pi \text{ etc}\right)$
	Tatal		1	(AWK1 10.5 or 10.5π m1, A0)
	l I otal		4	

MPC3 (cont	
0	

Q	Solution	Marks	Total	Comments
3 (a)	$f(x) = x^3 + 5x - 4$			
	f(0.5) = -1.375	M1		Condone f (0.5) rounding to -1.4
	f(1) = 2			
	Change of sign $\therefore 0.5 < \alpha < 1$	A1	2	Both statements needed
	3 5 4 0			
(b)	$x^{3} + 5x - 4 = 0$			
	$5x = 4 - x^3$			Must be seen
	$x = \frac{1}{4}(4 - x^3)$	B1	1	AG
	5			
	r = 0.5			
(0)	$x_1 = 0.5$			
	$(x_2 = 0.775) = (31/40)$	M1		For x_2 or $x_3 = (2 \text{ sf})$
	$x_3 = 0.707$	A1	2	
(d)	<i>y</i> †			
	1			
		M1		From 0.5 vertical to curve
				then horizontal to line
		A1	2	САО
			_	
	$O = 0.5 \hat{x_3} \hat{x_2} x$			
	Total		7	

WII CJ (COIII)	MPC3	(cont)
----------------	------	--------

Q	Solution	Marks	Total	Comments
4(a)	$\sec x = \frac{3}{2}$			
	2			
	$\cos x = \frac{2}{3}$			
	x = 48,312	B1		1 correct
	(Condone answers rounding to)	B1	2	2 correct and no extras in interval
(b)	$2\tan^2 x = 10 - 5\sec x$			
	$2(\sec^2 x - 1) = 10 - 5\sec x$	M1		Use of trig identity correctly
	$2 \sec^2 x + 5 \sec x - 12 (= 0)$	A1		
	$(2 \sec x - 3)(\sec x + 4)(=0)$	m1		Attempt to solve or factorise 1 slip using formula
	$\sec x = \frac{3}{2}, -4$ with an of these			
	$\cos x = \frac{2}{3}, -\frac{1}{4}$	A1		
	<i>x</i> = 48, 312, 104, 256	B1 B1	6	AWRT 3 correct condone 105 or 255 All correct and no extras in interval
	Alternative:		-	
	$\frac{2\sin^2 x}{\cos^2 x} = 10 - \frac{5}{\cos x}$	(M1)		
	$2\sin^2 x = 10\cos^2 x - 5\cos x$			
	$2 - 2 \cos^2 x = 10 \cos^2 x - 5 \cos x$	(A1)		
	$12\cos^2 x - 5\cos x - 2 = 0$			
	then rest of scheme as above		0	
5(a)	$f(x) \le 2, f \le 2, y \le 2$	D2	o	$\leq 2 f(r) < 2 r < 2$
5(a)		B2	Z	$\begin{cases} 22, 1 \ (x) < 2, x \ge 2 \\ y < 2, f < 2 \end{cases} $ B1
(b)	f(x) is not one to one	E1	1	Allow many to one or numerical example
(c)(i)	$\operatorname{fg}(x) = 2 - \left(\frac{1}{x-4}\right)^4$	B1	1	
(ii)	$2 - \left(\frac{1}{x-4}\right)^4 = -14$			
	$16 = \left(\frac{1}{x-4}\right)^4$			
	$\left(x-4\right)^4 = \frac{1}{16}$	M1		Correct handling of fourth root Must have ±
	$x - 4 = \pm \frac{1}{2} \int$	M1		Correct handling of reciprocal
	$x = 4\frac{1}{2}, 3\frac{1}{2}$	A1	3	
	Total		7	

MPC3 (cont)			
Q	Solution	Marks	Total	Comments
6(a)	$y = e^{2x} \left(x^2 - 4x - 2 \right)$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{2x} \left(2x - 4 \right)$	M1		Product rule; allow 1 slip
	$+(x^2-4x-2)2e^{2x}$	A1		
	$\frac{dy}{dx} = e^{2x} \left(2x - 4 + 2x^2 - 8x - 4 \right)$	M1		Factorising $e^{2x} (ax^2 + 6x + 0)$
	$e^{2x}\left(2x^2-6x-8\right)$	A1		or $x^2 - 3x - 4 = 0$
	$e^{2x} \neq 0$			
	(x-4)(x+1) = 0	m1		Solving 3 term quadratic
	x = 4, -1	A1	6	And no extras eg $x = 0$
(b)(i)	$\frac{d^2 y}{dx^2} = e^{2x} \cdot 2 + (2x - 4)2e^{2x}$	M1		Product rule from their $\frac{dy}{dx}$ in form
	+ $(x^2-4x-2)4e^{2x}+2e^{2x}(2x-4)$	A1	2	e^{2x} (quadratic) $e^{2x} (4x^2 - 8x - 22)$
	Or		2	
	$\frac{d^2 y}{dx^2} = e^{2x} (4x - 6) + (2x^2 - 6x - 8) 2e^{2x}$	M1 A1		
(ii)				A^2
(11)	$x = 4 : y'' = e^{8}(10) > 0 :: MIN$	M1		Their 2 x's in their $\frac{d^2 y}{dx^2}$
	$x = -1: y'' = e^{-2} (-10) < 0:: MAX$	A1	2	only of form e ²⁴ (quadratic) CSO Both correct
				Allow values either side of y or y'
	Total		10	
7(a)	$3e^x = 4$			
	$e^x = \frac{4}{3}$	M1		
	$x = \ln \frac{4}{3}$	A1	2	
(b)(i)	$3e^x + 20e^{-x} = 19$			
	$3y + \frac{20}{y} = 19$ or $3e^{2x} + 20 = 19e^{x}$			
	$3y^2 - 19y + 20 = 0$	B1	1	AG
(ii)	(3y-4)(y-5)=0			
	$y = \frac{4}{3}, 5$	B1		
	$\therefore x = \ln \frac{4}{3}, \ln 5$	M1 A1	3	ln (their + ve y's)
	Total		6	
				•

Q	Solution	Marks	Total	Comments
8 (a)	$P(-1, \pi)$	B1		Condone $(-1, 180^{\circ})$
	Q(1,0)	B1	2	
(b)	Translate	E1		
		B1		or equivalent in words
	Stretch SF 2 // y-axis	M1		Stretch + one other correct
		A1	4	all correct
(c)	ν 2π			
		R1		Correct shape in 1st quadrant
		DI		Correct shape in 1st quadrant
		B1	2	2π and 2 marked correctly
	V			
(d)(i)	$\frac{3}{2} = \cos^{-1}(x-1)$	M1		
	$\cos\left(\frac{y}{2}\right) = x - 1$			
	$\left(2\right)$			
	$x = \cos\left(\frac{y}{2}\right) + 1$	A1	2	
	(2)			
	1 ()	M1		$k \sin(c)$
(ii)	$-\frac{1}{2}\sin\left(\frac{y}{2}\right)$			dr
(11)	2 (2)	A1		$\frac{dx}{dy}$ correct
	(dr) 1			
	At $y = 2$, $\left(\frac{dx}{dy}\right) = \int -\frac{1}{2}\sin 1$	A1	3	Condone AWRT –0.42
	Total		13	

Q	Solution	Marks	Total	Comments
9(a)	$y = \frac{4x}{4x - 3}$ $\frac{dy}{dx} = \frac{(4x - 3) \cdot 4 - 4x(4)}{(4x - 3)^2}$ $= \frac{-12}{(4x - 3)^2}$	M1 A1	2	Must use quotient rule Condone one slip k=-12
(b)(i)	$\mathbf{v} = x \ln(4x - 3)$			
(~)(-)	$\frac{dy}{dx} = \frac{x.4}{4x-3} + \ln(4x-3)$	M1		$\frac{f(x)}{4x-3} + g(x) $ 'f(x)' may be constant
		m1 A1	3	$\frac{kx}{4x-3} + \ln(4x-3)$
(ii)	x = 1 y = 0	B1		
	$\frac{\mathrm{d}y}{\mathrm{d}y} = 4$	M1		Sub $x = 1$ into their $\frac{dy}{dx}$
	dx	A 1	2	dx
	$\therefore y = 4(x-1)$ any correct form	AI	3	CSO Must have full marks in (b)(1)
(c)(i)	u = 4x - 3 du = 4dx $\int \frac{4x}{4x - 3} dx = \int \frac{u + 3}{u} \frac{du}{4}$	M1 A1		Or $\int \frac{4x}{4x-3} dx = \int \left(1 + \frac{3}{4x-3}\right) dx$
	$= \left(\frac{1}{4}\right) \int \left(1 + \frac{3}{u}\right) (du)$ $= \frac{1}{4} (u + 3\ln u)$	m1		$=\int \left(1+\frac{3}{u}\right) du$ etc
	$= \frac{1}{4} \left[(4x - 3) + 3\ln(4x - 3) \right] (+c)$	A1	4	CSO Condone missing du
(ii)	$\int \ln(4x-3) dx$			
	$u = \ln(4x - 3) \frac{\mathrm{d}v}{\mathrm{d}x} = 1$	M1		In correct direction
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{4}{4x - 3} \qquad v = x$			
	$\int = x \ln (4x - 3) - \int \frac{1}{4x - 3} dx$	A1		
	$= x \ln (4x - 3) - \frac{1}{4} [(4x - 3) + 3 \ln (4x - 3)] + (+c)$	m1 A1	4	$x\ln(4x-3)$ – their (c)(i)
			17	
	Total TOTAI		16 75	
	IUIAL		15	

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for	or accuracy			
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
$\sqrt{100}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	С	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3		1		1
Q	Solution	Marks	Total	Comments
1(a)(i)	$f(x) = \frac{\cos x}{2x+1} - \frac{1}{2}$ $f(0) = \frac{1}{2}; f\left(\frac{\pi}{2}\right) = -\frac{1}{2}$ Change of sign $0 < \alpha < \frac{\pi}{2}$	M1 A1	2	OE $x = 0$ LHS = 1, $x = \frac{\pi}{2}$ LHS = 0 Either side of $\frac{1}{2}$, $\therefore 0 < \alpha < \frac{\pi}{2}$
(ii)	$\frac{\cos x}{2x+1} = \frac{1}{2}$ $2\cos x = 2x+1$ $2\cos x - 1 = 2x$ or, $\cos x = x + \frac{1}{2}$			Either line
	$x = \cos x - \frac{1}{2}$	B1	1	AG; or $\cos x - \frac{1}{2} = x$ All correct with no errors
(iii)	$x_1 = 0$ $x_2 = 0.5$ $x_3 = 0.378$	M1 A1	2	Attempt at iteration (allow $x_2 = -0.5$, $x_3 = 0.38, 0.4$) CAO
(b)(i)	$\frac{dy}{dx} = \frac{(2x+1)(-\sin x) - \cos x \times 2}{(2x+1)^2}$	M1 A1		Attempt at quotient rule: $\frac{\pm (2x+1)\sin x \pm 2\cos x}{(2x+1)^2}$ Either term correct
(ii)	x = 0	A1	3	All correct ISW
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2$	m1		Correctly subst. $x = 0$ into their $\frac{dy}{dx}$
	\therefore Gradient of normal = $\frac{1}{2}$	A1	2	CSO
	Total		10	

MPC3 (cont)			
Q	Solution	Marks	Total	Comments
2(a)	$f(x) \ge 0$	M1		For ≥ 0 , $f(x) > 0$
		A1	2	Correct; allow $y \ge 0$, $f \ge 0$
(b)(i)	$y = \sqrt{2x + 5}$			
	$x = \sqrt{2y+5}$	M1		$x \Leftrightarrow y$
	$x^2 = 2y + 5$	M1		Attempt to isolate, squaring first
	$x^2 = 5$			Thempt to isolate, squaring first
	$f^{-1}(x) = \frac{x-2}{2}$	A1	3	condone $(y =)$
<i>(</i> 1)	r > 0	DIE		
(11)	$x \neq 0$	BIF	1	It their (a), but must be x
2(c)(i)	$h(x) = f\sigma(x)$			
	$\frac{1}{\sqrt{1-1}}$			
	$= \sqrt{2} \left(\frac{1}{4\pi + 1} \right) + 5$	B1	1	
	$\bigvee (4x+1)$			
(••)				
(11)	$\sqrt{2\left(\frac{1}{4x+1}\right)+5} = 3$			
	$\begin{pmatrix} 1 \end{pmatrix}$			
	$2\left(\frac{1}{4r+1}\right) + 5 = 9$	M1		one correct step from (c)(i), squaring
	$\frac{1}{4x+1} = 2$ oither	A 1		
	$4r + 1 - \frac{1}{2}$ or $16r + 4 - 2$	AI		
	4x + 1 = 2 Joi 10x + 4=2			
	$x = -\frac{1}{2}$ or equiv	A 1	2	CSO
	8 Total	AI		
2(-)		M1	10	Sight of ± 0.22 or 18.42
3 (a)	$\tan^{-1}\left(\frac{-3}{3}\right) = -0.32$	MII		Sight of ± 0.52 of 18.45
		A 1		A WDT
	x = 2.82, 5.96	A1 A1	3	-1 for any extra in range, ignore extra
				answers not in range.
				[SC 161.57, 341.57 AWRT M1A1
				(max 2/3)]
(b)	$3(\tan^2 x + 1) = 5\tan x + 5$			
	$3\tan^2 x - 5\tan x - 2 = 0$	B1	1	AG
3 (c)	$(3\tan x+1)(\tan x-2)=0$	M1		Attempt at factorisation/formula
	$\tan x = 2 - \frac{1}{2}$	A1		
	3			
	x = 1.11, 4.25, 2.82, 5.96 AWRT	BI		5 correct [SU $x = 1.11, 4.25$ + their two answers from (a)]
		B1	4	4 correct, no extras in range
				[SC 161.57, 341.57, 63.43, 243.43
			6	AWRT B1 (max 3/4)]
	Total		8	

PMT

MPC3 (cont) Calatian	N/	T-4-1	Common and a
Q	Solution	Marks	Total	Comments
4(a)	y 50	M1		Modulus graph, 3 section, condone shape inside + outside $\pm\sqrt{50}$
		A1		Cusps + curvature outside $\pm\sqrt{50}$
	$\begin{array}{c c} \hline & & & \\ \hline \\ \hline$	A1	3	Value of y and shape inside $(\pm\sqrt{50})$
(b)	$ 50 - x^2 = 14$ $50 - x^2 = 14$ $x^2 = 36$			
	$50-x^2 = -14$ $x^2 = 50$ $50-x^2 = -14$ $x^2 = 64$	M1		Either
	$x = \pm 6, \pm 8$	A1 A1	3	2 correct, from correct working All 4 correct, from correct working
(c)	-6 < x < 6 x > 8, x < -8	B1 B1	2	
(d)	Reflect in x-axis	M1.A1		(Reflect in $y - a$)
(u)	Translate $\begin{bmatrix} 0\\50 \end{bmatrix}$	E1, B1	4	or $\begin{cases} \text{Translate} \begin{bmatrix} 0\\ 50-2a \end{bmatrix} \end{cases}$
				or $\left\{ \text{Translate} \begin{bmatrix} 0\\ -50 \end{bmatrix} \right\}$
				$\begin{bmatrix} \text{Reflect in } x - \text{axis} \end{bmatrix}$
				or $\left\{ \begin{array}{c} \text{Translate} \\ 2a-50 \end{array} \right\}$
	Reflect in $y = 25$ scores $4/4$			
	Total		12	
5(a)	$2\ln x = 5$			
	$\ln x = \frac{5}{2} x = e^{\frac{5}{2}}$	B1	1	
(b)	$2\ln x + \frac{15}{\ln x} = 11$			
	$2(\ln x)^2 - 11\ln x + 15 = 0$	M1		Forming quadratic equation in $\ln x$, condone poor notation
	$(2\ln x - 5)(\ln x - 3) = 0$	m1		Attempt at factorisation/formula
	$\ln x = \frac{5}{2}, 3$ condone $2\ln x = 5$	A1		
	$x = e^{\frac{5}{2}}, e^{3}$	A1,A1	5	[SC for substituting $x = e^{\frac{5}{2}}$ or equivalent into equation and verifying B1 $\left(\frac{1}{5}\right)$]
	Total		6	
•				

MPC3 (cont)	1		
Q	Solution	Marks	Total	Comments
6(a)	$V = \pi \int x^2 \mathrm{d} y$	B1		PI
	$V = \frac{(\pi)}{4} \int \left(100 - y^2 \right) \mathrm{d}y$	M1		$k \int (100 - y^2) dy$ may be recovered Allow $\int (\text{their } x)^2 dy$, expanded
	$= \frac{(\pi)}{4} \left[100 y - \frac{y^3}{3} \right]_{(0)}^{(10)}$	A1		
	$=\frac{(\pi)}{4}\left[\frac{2000}{3}\right]$	m1		For $F(10) - F(0)$
	$=\frac{500\pi}{3}$	A1	5	OE CSO
				SC: if rotated about x-axis $V = \pi \left[100x - \frac{4x^3}{3} \right]_0^5 \text{ M1}$ $= \frac{1000}{3} \pi \text{ A1 max } 2/5$
(b)				
	0.5 9.95(0) 1.5 9.539	B1		Correct <i>x</i>
	2.5 8.66(0) or better	M1		4 + correct <i>y</i> to 2 sf
	3.5 7.141 4.5 4.359	A1		All y correct
	$A = 1 \times \sum y = 39.6$	A1	4	$(39.6 \text{ scores } \frac{4}{4})$
6(c)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \left(100 - 4x^2 \right)^{-\frac{1}{2}} \left(-8x \right)$	M1		Chain rule $()^{-\frac{1}{2}} \times f(x)$; allow $f(x) = k$
				$f(x) = \frac{1}{2}(-8x) = -4x$
	$x = 3 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -12 \left(100 - 36\right)^{-\frac{1}{2}}$	A1		
	$=-\frac{3}{2}$ or equivalent	A1	3	CSO
(ii)	$y - 8 = -\frac{3}{2}(x - 3)$	M1		$y - 8 = \left(\text{their}\frac{\mathrm{d}y}{\mathrm{d}x}\right)(x - 3)$
				or $y = \left(\text{their} \frac{dy}{dx} \right) x + c$ and subst. (3,8) to
	(2v-16 = -3r+9)			find c
	2y + 3x = 25	A1	2	AG; all correct with no slips, full marks in part (i)

MPC3				
Q	Solution	Marks	Total	Comments
6(d)	$x = 0$ $y = \frac{25}{2}$ or equivalent	B1		
	$y = 0 \qquad x = \frac{25}{3}$	B1		OE
	Area of $\Delta = \frac{1}{2} \times \frac{25}{2} \times \frac{25}{3}$	M1		for $\frac{1}{2}$ (their y)×(their x) or $\frac{1}{2} ab \sin C$
	Area = Area Δ – (b) Required area = 12.5 AWRT	m1 A1	5	PI $\Delta > (b)$ Condone 12.4 AWRT
(d)	Alternative			
	Area $\Delta = \int_{0}^{\frac{25}{3}} \frac{1}{2} (25 - 3x) (dx)$	(B1) (B1)		
	$= \frac{\frac{1}{2} \left[25x - \frac{3x^2}{2} \right]_0^{\frac{25}{3}}}{\frac{1}{2} \left[\frac{625}{3} - \frac{625}{6} \right]}$	(M1)		For integration and $f(\frac{25}{3}) - f(0)$
	$=\frac{625}{12}$			
	Total		10	
7(9)	$\int (t-1) \ln t dt$		1)	
(a)	$u = \ln t \frac{\mathrm{d}v}{\mathrm{d}t} = t - 1$	M1		Differentiate + integrate, correct direction
	$\frac{\mathrm{d}u}{\mathrm{d}t} = \frac{1}{t} \qquad v = \frac{t^2}{2} - t$	A1		All correct
	$\int = \left(\frac{t^2}{2} - t\right) \ln t - \int \left(\frac{t^2}{2} - t\right) \times \frac{1}{t} (dt)$			
	$= \left(\frac{t^2}{2} - t\right) \ln t - \int \left(\frac{t}{2} - 1\right) (dt)$	A1		Condone missing brackets
	$=\left(\frac{t^2}{2}-t\right)\ln t - \frac{t^2}{4} + t(+c)$	A1	4	CAO

MPC3 (cont)			-
Q	Solution	Marks	Total	Comments
7(a)	Alternative $(t = 1) \ln t$			
	$\int (l-1) \prod l$	(M1)		$u = \ln t v = (t-1)$
		(A1)		$u' = \frac{1}{t}$ $v = \frac{(t-1)^2}{2}$
	$\int = \frac{(t-1)^2}{2} \ln t - \int \frac{(t-1)^2}{t} \frac{1}{t} dt$			
	$\frac{(t-1)^2}{2} \ln t - \frac{1}{2} \int \frac{t^2 - 2t + 1}{t} dt$			
	$\frac{(t-1)^2}{2} \ln t - \frac{1}{2} \int t - 2 + \frac{1}{t} dt$	(A1)		
	$\frac{(t-1)^2}{2} \ln t - \frac{1}{2} \left[\frac{t^2}{2} - 2t + \ln t \right]$	(A1)		
	$=\frac{t^2}{2}\ln t - t\ln t + \frac{1}{2}\ln t - \frac{t^2}{4} + t - \frac{1}{2}\ln t$			
	$= \left(\frac{t^2}{2} - t\right) \ln t - \frac{1}{4} t^2 + t + c$		(4)	
(b)	t = 2x + 1			
	dt = 2 dx (RHS)	M1		$\frac{dt}{dt} = 2$ (LHS)
	2x = t - 1,	m1		dx OE
	$\left[-\left(\sum_{i=1}^{n} \left(t_{i}\right)\right) + t_{i}\right]$			
	$J-J \propto (l-1) \ln l \frac{\lambda}{\lambda}$	A1	3	AG
(c)	$[x]_0^1 = [t]_1^3$	M1		Limit becoming 3
	$\int = \left[\left(\frac{t^2}{2} - t \right) \ln t - \frac{t^2}{4} + t \right]_1^3$			
	$= \left[\left(\frac{9}{2} - 3\right) \ln 3 - \frac{9}{4} + 3 \right] - \left[0 - \frac{1}{4} + 1 \right]$	m1		Correctly sub. 1,3 into their (a)
	$=\frac{3}{2}\ln 3$	A1	3	CSO
	or $\int = \left[\left(\frac{(2x+1)^2}{2} - (2x+1) \right) \ln(2x+1) - \frac{(2x+1)^2}{4} + (2x+1) \right]_0^1$	(M1)		Condone 1 slip
	$= \left(\left(\frac{9}{2} - 3\right) \ln 3 - \frac{9}{4} + 3 \right) - \left(0 - \frac{1}{4} + 1\right)$	(m1)		Correctly sub. 0,1
	$=\frac{3}{2}\ln 3$	(A1)	(3)	CSO
	Total		10	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC3 Pure Core 3

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.
Key to mark scheme and abbreviations used in marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
E	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
-x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3

Q	Solution	Marks	Total	Comments
1 (a)	$y'=e^{-4x}(2x+2) - 4e^{-4x}(x^2+2x-2)$	M1		$y' = Ae^{-4x}(ax+b) \pm Be^{-4x}(x^2+2x-2)$
		A1		where <i>A</i> and <i>B</i> are non-zero constants All correct
	$= e^{-4x} \left(2x + 2 - 4x^2 - 8x + 8 \right)$			or $-4x^2e^{-4x} - 6xe^{-4x} + 10e^{-4x}$
	$= 2e^{-4x} \left(5 - 3x - 2x^2 \right)$	A1	3	AG; all correct with no errors, 2^{nd} line (OE) must be seen
				Condone incorrect order on final line
	or $y = x^2 e^{-4x} + 2xe^{-4x} - 2e^{-4x}$			
	$y' = -4x^{2}e^{-4x} + 2xe^{-4x} + 2x - 4e^{-4x} + 2e^{-4x} + 2e^{-4x} + 8e^{-4x}$	(M1) (A1)		$Ax^{2}e^{-4x} + Bxe^{-4x} + Cxe^{-4x} + De^{-4x} + Ee^{-4x}$ All correct
	$= -4x^2 e^{-4x} - 6x e^{-4x} + 10 e^{-4x}$			
	$= 2e^{-4x} \left(5 - 3x - 2x^2 \right)$	(A1)		AG; all correct with no errors, 3 rd line (OE) must be seen
(b)	-(2x+5)(x-1)(=0)	M1		OE Attempt at factorisation $(\pm 2x \pm 5)(\pm x \pm 1)$
				or formula with at most one error
	$x = \frac{-5}{2}, 1$	A1		Both correct and no errors
				SC $x = 1$ only scores M1A0
	$x=1, y=e^{-4}$	m1		For $y = ae^b$ attempted
		A1F		Either correct, follow through only from incorrect sign for x
	$x = -\frac{5}{2}, y = e^{10} \left(-\frac{3}{4}\right)$	A1	5	CSO 2 solutions only
				Note: withhold final mark for extra
				Note: approximate values only for y can
	Total		8	score m1 only
1	1 otal		0	

Q	Solution	Marks	Total	Comments
2(a)(i)	A	B1		correct shape passing through origin and stopping at <i>A</i> and <i>B</i>
	$A\left(1,\frac{\pi}{2}\right)$	B1		
	$B\left(-1,-\frac{\pi}{2}\right)$	B1	3	SC $A(1, 90)$ and $B(-1, -90)$ scores B1
(ii)	line intersecting their curve (positive gradient, positive <i>y</i> intercept) Correct statement	M1 A1	2	one solution only, stated or indicated on sketch - must be in the first quadrant (ie curve intersects line once) Must have scored B1 for graph in (a)(i)
(b)	LHS $(0.5) = 0.5$ RHS $(0.5) = 1.1$	M1		
	LHS(1) = 1.6 RHS(1) = 1.3) At 0.5 LHS < RHS, At 1 LHS > RHS \therefore 0.5 < α < 1 or	A1	2	CSO
	$f(x) = \sin^{-1}(x) - \frac{1}{4}x - 1$			I (x) must be defined
	$ \begin{cases} f(0.5) = -0.6 \\ f(1) = 0.3 \end{cases} $ AWRT	(M1)		Allow $f(0.5) < 0 f(1) > 0$
	Change of sign $\Rightarrow 0.5 < \alpha < 1$	(A1)		
	or f(x) = sin $\left(\frac{1}{4}x+1\right) - x$			f(x) must be defined
	f(0.5) = 0.4 f(1) = -0.1 Attempt	(M1)		
	Change of sign $\Rightarrow 0.5 < \alpha < 1$	(A1)		
	or $f(x) = A \sin^{-1} x + x + A$			f(x) must be defined
	f(0.5) = -2.4 f(0.5) = -2.4 attempt	(M1)		
	1 (1) = 1.3] Change of sign $\Rightarrow 0.5 < \alpha < 1$	(A1)		

Q	Solution	Marks	Total	Comments
2(c)(i)	$x_2 = 0.902$	M1		Sight of AWRT 0.902 or AWRT 0.941
	$x_3 = 0.941$	A1	2	These values only
(ii)		M1		Staircase, (vertical line) from x_1 to curve, horizontal to line, vertical to curve
	\overrightarrow{O} $\overrightarrow{x_1}$ $\overrightarrow{x_2}$ $\overrightarrow{x_3}$	A1	2	x_2 , x_3 approx correct position on <i>x</i> -axis
	Total		11	

Q	Solution		Marks	Total	Comments
3 (a)	$\sin x = \frac{1}{2},$				
	3°	10 47			
	or signt of ± 0.54 , ± 0.11 for ± 0.64	. 19.47 etter)	M1		
			1011		
	x = 0.34, 2.8(0)	AWRT	A1	2	Penalise if incorrect answers in range; ignore answers outside range
(b)	$\csc^2 x - 1 = 11 - \csc x$		M1		Correct use of $\cot^2 x = \cos \operatorname{ec}^2 x - 1$
	$\csc^2 x + \csc x - 12 (=0)$		A1		
	$(\operatorname{cosec} x+4)(\operatorname{cosec} x-3)(=0)$		m1		Attempt at Factors Gives cosec x or -12 when expanded Formula one error condoned
	$\operatorname{cosec} x = -4, 3$		A 1		
	$\sin x = -\frac{1}{4}, \frac{1}{3} $		AI		Either Line
	$\sin x = -\frac{1}{4}$				
	\Rightarrow x=3.39, 6.03	AWRT	B1F		3 correct or their two answers from (a) and 3 39, 6 03
	0.34, 2.8(0)	AWRT	B1	6	4 correct and no extras in range ignore answers outside range SC 19.47, 160.53, 194.48, 345.52 B1
	Alternative				
	$\frac{\cos^2 x}{\sin^2 x} = 11 - \frac{1}{\sin x}$ $\cos^2 x = 11 \sin^2 x - \sin x$		(M 1)		Correct use of trig ratios and multiplying
	$1 - \sin^2 x = 11\sin^2 x - \sin x$		(111)		by $\sin^2 x$
	$0 = 12\sin^2 x - \sin x - 1$		(A1)		
	$0 = (4\sin x + 1)(3\sin x - 1)$		(m1)		Attempt at factors as above
	$\sin x = -\frac{1}{4}, \frac{1}{3}$		(A1)		
			(B1F) (B1)		As above
		Total	()	8	

Q	Solution	Marks	Total	Comments
4(a)	8	M1 A1	2	Modulus graph V shape in 1^{st} quad going into 2^{nd} quad, touching <i>x</i> -axis. Must cross <i>y</i> -axis Condone not ruled 4 and 8 labelled
	- 4 x			
(b)	x=2 x=6	B1 B1	2	One correct answer Second correct answer and no extras
	<i>x</i> = 0	Ы	2	Condone answers shown on the graph, if clearly indicated
(c)	x>6 x<2	B1 B1	2	One correct answer Second correct answer and no extras and no further incorrect statement eg 6 < x < 2 or $2 < x > 6$
	Total		6	
5(a)	$\begin{array}{c ccc} x & y \\ \hline 1.5 & 1.98100 \\ 4.5 & 2.22882 \end{array}$	B1		x values correct PI
	$\begin{array}{cccc} 4.5 & 5.22885 \\ 7.5 & 4.11496 \\ 10.5 & 4.74710 \end{array}$	M1		3+ <i>y</i> values correct to 2sf or better or exact values
	$\int -3 \times \Sigma v$	A1		1.981, 3.228/9, 4.114/5, 4.747 for y (or better)
	=42.2	A1	4	(Note: 42.2 with evidence of mid-ordinate rule with four strips scores 4/4)
(b)(i)	$y = \ln\left(x^2 + 5\right)$			
	$e^y = x^2 + 5$			OE
	$x^2 = e^y - 5$	B1	1	AG Must see middle line, and no errors
(ii)	$(\pi) \int \left(e^{y} - 5 \right) (dy)$	M1		Condone omission of brackets around f (<i>y</i>) throughout
	$=(\pi)\left[e^{y}-5y\right]_{(5)}^{(10)}$	A1		
	$=(\pi)\left[\left(e^{10}-50\right)-\left(e^{5}-25\right)\right]$	m1		F(10) - F(5)
	$V = \pi \left[e^{10} - e^5 - 25 \right]$	A1	4	CSO including correct notation – must see d y ISW if evaluated
(c)	$(y=)\ln\left\lfloor\left(\frac{x}{4}\right)^2+5\right\rfloor+3$	M1		$\frac{x}{4}$ seen, condone $\ln \frac{x^2}{4}$ +
		B1 A1	3	+ 3 CSO mark final answer (no ISW)
	Total		12	

MPC3	(cont)
------	--------

Q	Solution		Marks	Total	Comments
6(a)	f(x) > -3		M1		$(>-3', (x) > -3')$ or $(f(x) \ge -3')$
			A 1	2	Allow up 2
	2x 2		AI	2	Allow $y > -5$
(D)(1)	$y = e^{-5}$				
	y+3=e				
	$\lim_{x \to \infty} (y+3) = 2x$		MI		swap x and y
			M1		attempt to isolate: $\ln(y \pm A) = Bx$ or
					OF with no further incorrect working
	$(f^{-1}(x)) = \frac{1}{2} \ln(x+3)$		A1	3	Condone $y = \dots$
	Alternative				
	$x \rightarrow \times 2 \rightarrow e \rightarrow -3$				
	$\div 2 \leftarrow \ln \leftarrow + 3 \leftarrow x$ (M1) (M1)				
	$\ln(x+3)$		(1 1)		
	$y = \frac{1}{2}$		(A1)		
(ii)	x + 3 = 1		M1		for putting their $p(x)=1$ from
					$k \ln(p(x))$ in their part (b)(i)
	x = -2		A1	2	CSO
					SC: B2 $x = -2$ with no working, if full marks gained in part (b)(i)
	(f()) 1				
(c)(i)	$(gr(x) =) \frac{1}{3(e^{2x}-3)+4}$				substituting f into g
	either	OE	B1	1	ISW
	$(=)\frac{1}{3e^{2x}-5}$				
	, ,				
(ii)	=1				
(11)	$3e^{2x}-5$				
	$1=3e^{2x}-5$	OE	M1		Correct removal of their fraction
	$e^{2x} = 2$				
	$2x = \ln 2$		m1		Correct use of logs leading to $kx = \ln \frac{a}{b}$
	1 h 2				
	$x = -\ln 2$	OE	A1	3	evaluation
		Total		11	

0	Solution	Marks	Total	Comments
	(dy) and dx denotes dx with dx denotes dx	IVIAI KS	Iotai	$\pm 4 \cos^2 4x \pm B \sin^2 4x$
/(a)	$\left(\frac{dy}{dx}\right) = \int \frac{\cos 4x \cdot 4\cos 4x - \sin 4x \cdot -4\sin 4x}{\cos^2 4x}$	M1		$\frac{1 A \cos 4x \pm B \sin 4x}{\cos^2 4x}$
	$=\frac{4\cos^2 4x + 4\sin^2 4x}{\cos^2 4x} \text{or better}$	A1		Both terms correct
	$=4(1+\tan^2 4x)$ CSO	A1	3	All correct
	or $\left(\frac{dy}{dx}\right) = \frac{\cos 4x.4 \cos 4x - \sin 4x 4 \sin 4x}{\cos^2 4x}$	(M1)		$\frac{\pm A\cos^2 4x \pm B\sin^2 4x}{\cos^2 4x}$
	$= \frac{4\cos 4x\cos 4x}{\cos 4x\cos 4x} + \frac{4\sin 4x\sin 4x}{\cos 4x\cos 4x}$ or better	(A1)		
	$=4\left(1+\tan^2 4x\right) \qquad \text{CSO}$	(A1)		All correct
(b)	$\frac{d^2 y}{dx^2} = 4 \times 2 \tan 4x \times \dots$	M1		$A \tan 4x \times f(4x)$
	$4 \sec^2 4x$	m1		$f(4x) = B \sec^2 4x$
	$=32 \tan 4 \operatorname{rsec}^2 4 \operatorname{r}$	A1F		ft $8 \times$ their <i>p</i> from part (a)
	$= 32 \tan 4x \left(1 + \tan^2 4x\right)$	m1		Previous two method marks must have been earned
	$=32y(1+y^{2})$	A1	5	CSO
	Alternative Solutions			
	$y' = 4 + 4 \tan^2 4x = 4 + 4 \frac{\sin^2 4x}{\cos^2 4x}$			
	$y'' = 4 \times \begin{bmatrix} \cos^2 4x 2\sin 4x 4\cos 4x + \sin^2 4x 2\cos 4x 4\sin 4x \end{bmatrix}$	(M1)		$\frac{A\cos^3 4x \pm B\sin^3 4x}{\cos^4 4x}$ where A and B are
	$\cos^{4}4x$	(m1)		constants or trig functions. Where <i>A</i> is <i>m</i> sin4 <i>x</i> and <i>B</i> is <i>n</i> cos4 <i>x</i>
	$=\frac{4\times8\sin4x\cos4x\left\lfloor\cos^24x+\sin^24x\right\rfloor}{\cos^44x}$	(A1F)		ft $8 \times$ their <i>p</i> from part (a)
	$= 32 \tan 4x \sec^2 4x$	(m1)		$k \tan 4x \sec^2 4x$
	$= 32 y \left(1 + y^2\right)$	(A1)		CSO
	or du			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4\sec^2 4x$			
	$\frac{d^2 y}{dx^2} = 4 \times 2 \sec 4x.4 \sec 4x \tan 4x$	(M1) (m1)		$A \sec 4x \times f(4x)$ f(4x) = B sec 4x tan 4x
	$= 32 \sec^2 4x \tan 4x$	(A1F)		ft $8 \times$ their <i>p</i> from part (a)
	$= 32 \left(1 + \tan^2 4x\right) \tan 4x$	(m1)		Previous two method marks must have been earned
	$= 32 y \left(1 + y^2\right)$	(A1)		CSO

Q	Solution	Marks	Total	Comments
7(b) or	$\frac{dy}{dt} = 4(1 + \tan^2 4x)$			
	$dx = -4(1 + \tan -4x)$			
	$u = \tan 4x$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 4 + 4u^2$			
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = (8)u \frac{\mathrm{d}u}{\mathrm{d}x}$	(M1)		
	$\frac{du}{dx} = 4 + 4\tan^2 4x = 4 + 4u^2$	(m1)		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 8u(4+4u^2)$	(A1)		
	$=32u(1+u^2)$	(m1)		
	$=32y(1+y^{2})$	(A1)		
	Total		8	
8 (a)	$\int x \sin(2x-1) dx$			
	$u = x \frac{\mathrm{d}v}{\mathrm{d}x} = \sin\left(2x - 1\right)$	M1		$\int \sin f(x), \frac{d}{dx}(x)$ attempted
	$\frac{\mathrm{d}u}{\mathrm{d}x} = 1 v = -\frac{1}{2}\cos\left(2x - 1\right)$	A1		All correct – condone omission of brackets
	$(\mathfrak{f}=)-\frac{x}{2}\cos(2x-1)$	m1		correct substitution of their terms into parts
	$-\int -\frac{1}{2}\cos(2x-1)(\mathrm{d}x)$			
	$= -\frac{x}{2}\cos(2x-1) + \frac{1}{2}\int\cos(2x-1) (dx)$	A1		All correct – condone omission of brackets
	$= -\frac{x}{2}\cos(2x-1) + \frac{1}{4}\sin(2x-1) + c$	A1	5	CSO condone missing $+ c$ and dx Condone missing brackets around $2x - 1$ if recovered in final line ISW
(D)	u=2x-1	M1		OF
	du - 2dx	m1		OE All in terms of y
	$\int \frac{x^2}{2x - 1} \mathrm{d}x = \int \frac{(u + 1)}{4u} \frac{\mathrm{d}u}{2}$	A1		All correct PI from later working
	$= \left(\frac{1}{8}\right) \int \frac{u^2 + 2u + 1}{u} \mathrm{d}u$			
	$=\left(\frac{1}{8}\right)\int u+2+\frac{1}{u}\mathrm{d}u$	A1		
	$= \left(\frac{1}{8}\right) \left[\frac{u^2}{2} + 2u + \ln u\right]$	B1		or $\left(\frac{1}{8}\right)\left[\frac{\left(u+2\right)^2}{2} + \ln u\right]$
	$=\frac{1}{8}\left[\frac{(2x-1)^{2}}{2}+2(2x-1)+\ln(2x-1)\right]+c$	A1	6	or = $\frac{1}{8} \left[\frac{(2x+1)^2}{2} + \ln(2x-1) \right] + c$
				CSO condone missing $+ c$ only ISW
	Total		11	
	TOTAL		75	

Version 1.0

JA/

General Certificate of Education June 2010

Mathematics

MPC3

Pure Core 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3				
Q	Solution	Marks	Total	Comments
1(a)	$f(x) = 3^{x} - 10 + x^{3}$ (or reverse)			
	f(1) = -6	M1		Attempt to evaluate $f(1)$ and $f(2)$
	f (2)=7			
	Change of sign $\therefore 1 < \alpha < 2$	A1	2	All working must be correct plus statement
	OR			
	LHS $(1) = 3$ RHS $(1) = 9$			
	LHS (2) = 9 RHS (2) = 2 \int	(M1)		Must be these values
	At 1 LHS < RHS, At 2 LHS > RHS			
	$\therefore 1 < \alpha < 2$	(A1)		
(b)(i)	$3^{x} = 10 - x^{3}$			
	$x^3 = 10 - 3^x$			This line must be seen
	$x = \sqrt[3]{10 - 3^x}$	B1	1	AG
(**)	(x-1)			
(11)	$(x_1 = 1)$	2.61		
	$x_2 = 1.913$	MI		Sight of AWRT 1.9 or AWRT 1.2
	$x_3 = 1.221$	A1	2	Both values correct
	Total		5	

MPC3				
Q	Solution	Marks	Total	Comments
2(a)(i)	(y=) 1	B1	1	Condone 1 marked at A, $A = 1$ etc but not $\frac{1}{\cos 0}$, sec 0
(ii)	▲ ▲ ▲	M1		Modulus graph $y>0$
		A1		$3+2\times\frac{1}{2}$ sections roughly as shown,
	20 100 210 500			condone sections touching, variable minimum heights
		A1	3	Correct graph with correct behaviour at 4 asymptotes but need not show broken lines; and roughly same minima
(b)	$\cos x = \frac{1}{2}$ or $\cos^{-1}\frac{1}{2}$ seen	M1		or sight of $\pm 60^{\circ}$ or $\pm \frac{\pi}{3}$, ± 1.05 (AWRT)
	$x = 60^{\circ}, 300^{\circ}$	A1	2	Condone extra values outside $0^{\circ} < x < 360^{\circ}$, but no extras in interval
(c)	sec $(2x-10^\circ)=2$, sec $(2x-10^\circ)=-2$ cos $(2x-10^\circ)=\frac{1}{2}$ or cos $(2x-10^\circ)=-\frac{1}{2}$	M1		Either of these, PI by further working
	$2x-10^\circ = 60^\circ$, 300° or $2x-10^\circ = 120^\circ$, 240°	A1		Both correct values from one equation or 2 correct values and no wrong values from both equations,
	(ignore values outside $0^\circ < x < 360^\circ$)			but must have " $2x-10^\circ$ = "
	$x=35^{\circ}, 65^{\circ}, 125^{\circ}, 155^{\circ}$	B1		PI by $2x=70^{\circ}$, 130° , 250° , 310° 3 correct (and not more than 1 extra value in $0^{\circ} < x < 180^{\circ}$)
		B1	4	All 4 correct (and no extras in interval)
	Total		10	

MPC3 (cont)

Q	Solution	Marks	Total	Comments
3(a)(i)	$y = \ln(5x - 2)$			
		M1		$\frac{k}{5x-2}$
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{5}{5x-2}$	A1	2	No ISW, eg $\frac{5}{5x-2} = \frac{1}{x-2}$ (M1A0)
(ii)	$v = \sin 2x$			
(11)	y 5112x	M1		$k \cos 2x$
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) 2\cos 2x$	A1	2	
(b)(i)		M1		
(U)(U)	$f(x) \ge \ln 0.5$ or $f(x) \ge -\ln 2$		2	
	$\Gamma(x) \ge 10.5$ of $\Gamma(x) \ge 112$	711	2	
(ii)	$(gf(x)=) \sin \left[2\ln(5x-2)\right]$			Condone
()	or $(gf(x) -)$ $sin \ln(5x - 2)^2$	B 1	1	$\sin 2\ln(5x-2)$ or $\sin 2(\ln(5x-2))$
	$\operatorname{Gr}(\mathfrak{gr}(\mathfrak{x})^{-})$ $\operatorname{Sim}(\mathfrak{S}\mathfrak{x}^{-}\mathfrak{L})$	DI	1	but not $\sin 2(\ln 5x - 2)$ or $\sin 2\ln 5x - 2$
(***)	af(x) = 0			
(111)	gr(x) = 0			
	$\sin\left\lfloor 2\ln\left(5x-2\right)\right\rfloor = 0$			
	$2\ln(5x-2)=0$	M1		Correct first step from their (b)(ii)
	5x-2=1	m1		Their $f(x) = 1$ from $k \ln(f(x)) = 0$
	3	A 1	2	Withhold if clear error seen other than
	$x = -\frac{5}{5}$	AI	3	omission of brackets
(iv)	$r-\sin 2v$			
(17)	$\sin^{-1} x - 2y (\text{or } \sin^{-1} y - 2x)$	M1		
	$\sin x - 2y (01 \sin y - 2x)$	IVI 1		Correct equation involving sin
	$\left(g^{-1}(x)=\right)\frac{1}{2}\sin^{-1}x$	A1	2	
	Total		12	

Q	Solution		Marks	Total	Comments
4 (a)					
	$\begin{array}{c c} x & y \\ \hline 0.5 & \frac{4}{9} = 0.\dot{4} \end{array}$		B1		x values correct PI
	$0.75 \qquad \frac{48}{91} = 0.5275$		B1		At least 5 y values that would be correct to 2sf or better, or exact values. May be
	$1 \qquad \frac{1}{2} = 0.5$				seen within working.
	1.25 $\frac{80}{189} = 0.4233$				
	1.5 $\frac{12}{35} = 0.3429$				
	1.75 $\frac{112}{407} = 0.2752$				
	$2 \frac{-}{9} = 0.2$				
	$\left[\left(\frac{4}{9}+\frac{2}{9}\right)+4\left(\frac{48}{91}+\frac{80}{189}+\frac{112}{407}\right)\right]$	$\frac{1}{5} + 2\left(\frac{1}{2} + \frac{12}{35}\right)$	M1		Clear attempt to use 'their' y values within Simpson's rule
	$\int = \frac{1}{3} \times 0.25 [$]				
	=0.605		A1	4	Answer must be 0.605 with no extra sf (Note 0.605 with no evidence of Simpson's rule scores 0/4)
(b)	$\int_0^1 \frac{x^2}{1+x^3} \mathrm{d}x$				
	$=\frac{1}{2}\ln(1+x^{3})$		M1		$k \ln(1+x^3)$ condone missing brackets
	3-()		A1		Correct. A1 may be recovered for missing brackets if implied later
	$=\frac{1}{3}\ln(1+1)\left(-\frac{1}{3}\ln 1\right)$		m1		F(1) (-F(0))
	$=\frac{1}{3}\ln 2$		A1	4	In 1 must not be left in final answer
	Alternative $u = 1 + r^3$ $du = 3r^2 dr$				
	$\int = \int \frac{\mathrm{d}u}{3u}$		(M1)		$\frac{\mathrm{d}u}{\mathrm{d}x}$ correct and integral of form $k \int \frac{\mathrm{d}u}{u}$
	$=\frac{1}{2}[\ln u]$		(A1)		
	$=\frac{1}{3}\ln 2\left(-\frac{1}{3}\ln 1\right)$		(m1)		Correct substitution of correct u limits or conversion back to x and $F(1)$ (- $F(0)$)
	$=\frac{1}{3}\ln 2$		(A1)		ln 1 must not be left in final answer
		Total		8	

0	Solution	Morks	Total	Commonts
V		IVIAI'KS	Total	Comments
5(a)	10 cosec $x = 16 - 11 \cot x$			
	$10(1 + \cot^2 x) = 16 - 11\cot x$			
	$10\cot^2 x + 11\cot x - 6 = 0$	B1	1	AG Must see evidence of correct identity and no errors.
(b)	Attempt at factors, giving $\pm 10 \cot^2 x \pm 6$ when expanded.	M 1		Use of formula: condone one error
	$(5\cot x-2)(2\cot x+3) (=0)$	A1		Correct factors
	$\left(\cot x = \frac{2}{5}, -\frac{3}{2}\right)$			
	5 2			1 st A1 must be earned
	$\tan x = \frac{3}{2}, -\frac{2}{3}$	A1,A1	4	Condone AWRT –0.67
	2 3			ISW if <i>x</i> values attempted
	Alternative 1			
	$10\cot^2 x + 11\cot x - 6 = 0$			
	$10\frac{\cos^2 x}{\sin^2 x} + 11\frac{\cos x}{\sin x} - 6 = 0$			
	$10\cos^2 x + 11\cos x\sin x - 6\sin^2 x = 0$			
	$(5\cos x - 2\sin x)(2\cos x + 3\sin x) (=0)$	(M1)		Attempt at factors, gives
		(1 1)		$\pm 10\cos^2 x \pm 6\sin^2 x$ when explained
		(A1)		As above
	$(5\cos x = 2\sin x 2\cos x = -3\sin x)$			
	$5 = \tan x = 2 = \tan x$	(A1),		Condona AWPT 0.67
	$\frac{-1}{2}$ $\frac{-1}{3}$ $\frac{-1}{3}$	(A1)		ISW if r values attempted
				is win x values allompted
	Alternative 2			
	$10 + 11 \tan x - 6 \tan^2 x = 0$			
	$(5-2\tan x)(2+3\tan x) (=0)$	(M1) (A1)		Attempt at factors gives $\pm 10 \pm 6 \tan^2 x$
	5 2	(A1).		1^{st} A1 must be earned
	$\tan x = \frac{1}{2}, -\frac{1}{3}$	(A1)		Condone AWRT –0.67
			F	15 w 11 x values attempted

MPC3 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$y = \frac{\ln x}{x}$			Both coordinates must be stated not 1
	(when) $y = 0$ $x = 1$ or (1, 0)	B1	1	simply shown on diagram
(b)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{x \times \frac{1}{x} - \ln x}{x^2}$	M1		Quotient/product rule $\frac{\pm \frac{x}{x} \pm \ln x}{x^2}$
	$=\frac{1-\ln x}{x^2}$ or $x^{-2}-x^{-2}\ln x$	A1		OE must simplify $\frac{x}{x}$
	At B, $\frac{1-\ln x}{x^2} = 0$	m1		Putting their $\frac{dy}{dx} = 0$ or numerator = 0
	x = e	A1		CSO condone $x = e^1$
	$y = \frac{1}{e}$ or e^{-1}	A1	5	CSO must simplify ln e
(c)	Gradient at $x = e^3$			
	$=\frac{1-\ln e^{3}}{(e^{3})^{2}}$	M1		Substituting $x = e^3$ into their $\frac{dy}{dx}$ (condone
	$=\frac{-2}{e^6}$ or $-2e^{-6}$	A1		PI
	Gradient of normal $=\frac{1}{2}e^{6}$	A1	3	CSO simplified to this
	Total		9	

Q	Solution	Marks	Total	Comments
7(a)(i)	$\int x \cos 4x dx \qquad u = x \qquad \frac{dv}{dx} = \cos 4x$	M1		$\int \cos 4x, \ \frac{\mathrm{d}}{\mathrm{d}x}(x)$ attempted
	$\frac{\mathrm{d}u}{\mathrm{d}x} = 1 \qquad v = \frac{\sin 4x}{4}$	A1		All correct
	$\int = x \frac{\sin 4x}{4} - \int \frac{\sin 4x}{4} \mathrm{d}x$	m1		Correct substitution of their terms into parts formula
	$=\frac{x\sin 4x}{4} + \frac{\cos 4x}{16} (+c)$	A1	4	OE with fractions unsimplified
(ii)	$\int x^{2} \sin 4x dx \qquad u = x^{2} \frac{dv}{dx} = \sin 4x$ $\frac{du}{dx} = 2x \qquad v = -\frac{\cos 4x}{4}$	M1		$\int \sin 4x, \ \frac{d}{dx}(x^2) \ \text{attempted}$
	$\int = \frac{-x^2 \cos 4x}{4} - \int \frac{-2x \cos 4x}{4} \mathrm{d}x$	A1		
	$= \frac{-x^2 \cos 4x}{4} + \frac{1}{2} \int x \cos 4x dx$			
	$=\frac{-x^2\cos 4x}{4}+\frac{1}{2}[$			
	$\left[\frac{x\sin 4x}{4} + \frac{\cos 4x}{16}\right]$	m1		Clear attempt to replace integral using their answer from part (a)(i)
	$=\frac{-x^{2}\cos 4x}{4} + \frac{x\sin 4x}{8} + \frac{\cos 4x}{32} (+c)$	A1	4	OE with fractions unsimplified
(b)	$V = (\pi) \int_{(0)}^{(0,2)} (64) x^2 \sin 4x (dx)$	M1		
	$= (\pi \times 64) \left[\frac{-x^2 \cos 4x}{4} + \frac{x \sin 4x}{8} + \frac{\cos 4x}{32} \right]$			Must see evidence of their (a)(ii) result or starting again obtaining 3 terms of the form $\pm Ax^2 \cos 4x \pm Bx \sin 4x \pm C \cos 4x$
	$=\pi[2.09529-2]$	m1		AND $F(0.2) - F(0)$ attempted
	=0.299 AWRT	A1	3	Accept AWRT 0.0953 π
	Total		11	

MPC3 (cont) Solution	Marke	Total	Comments
<u>V</u> 8(a)	$v = e^x \rightarrow e^{2x} - 1$	IVIAIKS	Total	Comments
0(11)	Stretch (I)			
	scale factor $\frac{1}{2}$ (II)	M1		I + (II or III)
	in <i>x</i> -direction (III)	A1		I + II + III
	Translation	E1		Allow "translate"
	$\begin{bmatrix} 0\\ -1 \end{bmatrix}$	B1	4	OE "1 unit down" etc
(b)	x = 0 $y = 6$ or (0, 6)	B1	1	Both coordinates must be stated, not simply 6 marked on diagram
(c)(i)	$e^{2x} - 1 = 4e^{-2x} + 2$ $e^{4x} - e^{2x} - 4 + 2e^{2x}$			
	$e^{-e^{-2x}} = 4 + 2e^{-2x}$ or $(e^{2x})^2 - e^{2x} = 4 + 2e^{2x}$	M1		Multiplying both sides by e^{2x}
	$(e^{2x})^2 - 3e^{2x} - 4 = 0$	A1	2	AG With no errors seen
(ii)	$\left(\mathrm{e}^{2x}-4\right)\left(\mathrm{e}^{2x}+1\right)$	M1		$(e^{2x} \pm 4)(e^{2x} \pm 1)$
	$x = \ln 2$ or $\frac{1}{2} \ln 4$	A1		
	Reject $e^{2x} = -1$ OE	A1	3	eg $e^{2x} > 0$, $e^{2x} \neq -1$, impossible etc
(d)	$\int (4e^{-2x} + 2) dx (I)$			
	$= \left[\frac{4\mathrm{e}^{-2x}}{-2} + 2x\right]_{0}^{\ln 2}$	M1		I or II attempted and e^{-2x} or e^{2x} integrated correctly
	$= \left(\frac{4e^{-2\ln 2}}{-2} + 2\ln 2\right) - \left(\frac{4}{-2} + 0\right)$	m1		F['their $\ln 2$ ' from (c)(ii)] – F[0]
	$= -\frac{1}{2} + 2\ln 2 + +2 = \frac{3}{2} + 2\ln 2$			
	$\int \left(e^{2x} - 1 \right) dx \text{(II)}$			
	$= \left[\frac{e^{2x}}{2} - x\right]_{0}^{m^{2}}$	A1		Both I and II correctly integrated
	$=\left(\frac{\mathrm{e}^{2\ln 2}}{2}-\ln 2\right)-\left(\frac{1}{2}-0\right)$			
	$= 2 - \ln 2 - \frac{1}{2} = \frac{3}{2} - \ln 2$			
	$A = \left(\frac{3}{2} + 2\ln 2\right) - \left(\frac{3}{2} - \ln 2\right)$	B1√		Attempt to find difference of 'their I – their II'
	$= 3\ln 2 \text{or} \ln 8 \text{or} \frac{3}{2}\ln 4 \text{OE}$	A1	5	CSO must be exact

Q	Solution	Marks	Total	Comments
8(d)	Alternative $A = \int (4e^{-2x} + 2) dx - \int (e^{2x} - 1) dx$	(B1)		Condone functions reversed
	$= \int_{(0)}^{(\ln 2)} \left(4e^{-2x} - e^{2x} + 3 \right) \mathrm{d}x$			
	$= \left[\frac{4e^{-2x}}{-2} - \frac{e^{2x}}{2} + 3x\right]_{0}^{\ln 2}$	(M1) (A1)		e^{2x} or e^{-2x} correctly integrated
	$= \left(-2e^{-2\ln 2} - \frac{1}{2}e^{2\ln 2} + 3\ln 2\right) - \left(-2 - \frac{1}{2}\right)$	(m1)		Correct substitution of their ln 2 from (c)(ii) into their integrated expression
	$=3\ln 2$ or $\ln 8$ or $\frac{3}{2}\ln 4$ OE	(A1)		CSO must be exact
	Total		15	
	TOTAL		75	

General Certificate of Education (A-level) January 2011

Mathematics

MPC3

(Specification 6360)

Pure Core 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3					
Q	Solution		Marks	Total	Comments
1(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = k\left(x^3 - 1\right)^5$		M1		Where k is an integer or function of x
	$=6\times 3x^{2}(x^{3}-1)^{5}$	(ISW)	A1	2	
					But note
					$\frac{\mathrm{d}y}{\mathrm{d}x} = k\left(x^3 - 1\right)^5 + px^2 \qquad M0$
					Or
					$\left(u=x^3-1\right) \qquad \left(y=u^6\right)$
					$\frac{dy}{du} = 6u^5$ and $\frac{du}{dx} = 3x^2$ M1
					$= 6\left(x^3 - 1\right)^5 \times 3x^2 \qquad \qquad$
					Note $\frac{dy}{dx} = 6 \times 3x^2 (x^3 - 1)^5 + c \text{ scores } M1 \text{ A0}$ (penalise + c in differential once only in paper)
(b)(i)	$\frac{dy}{dx} = \pm x \times \frac{1}{x} \pm \ln x$		M1		Product rule attempted and differential of ln x
	$=1+\ln x$	(ISW)	A1	2	
(ii)	$(x = \mathbf{e})$ $y = \mathbf{e}$	PI	B1		Must have replaced ln e by 1 Condone $y = 2.72$ (AWRT)
	$\frac{dy}{dx} = 1 + \ln e \ (= 2)$		M1		Correct substitution into their $\frac{dy}{dr}$
					But must have scored M1 in (b)(i)
	y - e = 2(x - e) or $y = 2x - e$	OE, ISW	A1	3	Must have replaced ln e by 1
		Total		7	

Mark Scheme – General Certificate of Education (A-level) Mathematics – Pure Core 3 – January 2011

MPC3 (cont					
Q	Solution		Marks	Total	Comments
2(a)	$f(x) = (x^2 - 4) \ln(x + 2) - 15$				Or reverse
	f(3.5) = -0.9		M1		f(3.5) = 0.9 M1
	f(3.6) = 0.4		IVI I		$f(3.6) = -0.4 \int_{-100}^{1001}$
	Attempt at evaluating both f (3.5) ar	nd			But must see
	f (3.6)				$f(x) = 15 - (x^2 - 4) \ln(x + 2)$
					before A1 may be earned
					Condone $f(3,5) < 0$
					f(3.6) > 0 Only if $f(x)$ defined M1
					Or
					$x=3.5 \ y=14.1(<15)$
					$x = 3.6 \ y = 15.4 \ (>15)$ M1
	Change of sign, $\therefore 3.5 < \alpha < 3.6$	OE	A1	2	Either side of 15, $\therefore 3.5 < \alpha < 3.6$ OE A1
(b)	$(x^2-4)\ln(x+2)=15$				
	$x^2 - 4 = \frac{15}{15}$		M1		
	$\ln(x+2)$		1,11		Either of these lines correct
	$x^2 = 4 + \frac{15}{\ln(x+2)}$				for M1 only
	$\sqrt{15}$				Must have both middle lines and no
	$x = \pm \sqrt{4 + \frac{1}{\ln(x+2)}}$	AG	A1	2	errors seen
(c)	$(x_{1}=3\cdot5)$				
	$x_2 = 3.578$	CAO	B1		
	$x_3 = 3.568$	CAO	B1	2	
					Sight of AWRT 3.58 or 3.57 scores B1 B0
					Or \pm 3.578 or \pm 3.568 scores B1 B0
		Tatal		($x_1 - 5.576, x_2 - 5.506$ scores B1B0
		Total		Ó	

MPC3 (cont	cont)						
Q	Solution		Marks	Total	Comments		
	dr				Where <i>k</i> is an integer		
3(a)(i)	$\frac{\mathrm{d}x}{\mathrm{d}y} = k \sec^2\left(3y+1\right)$		M1		Condone omission of $\frac{dx}{dy}$		
					But		
					$\frac{dy}{dx} = k \sec^2(3y+1)$ scores M1 A0		
	$=3 \sec^2(3y+1)$	ISW	A1	2	Alternative methods		
					$y = \frac{1}{3} (\tan^{-1} x - 1)$		
					$\frac{\mathrm{d}x}{\mathrm{d}y} = k\left(1+x^2\right) \qquad \qquad \mathbf{M}1$		
					$=3(1+\tan^2(3y+1))$ A1		
					Or		
					$x = \frac{\sin(3y+1)}{\cos(3y+1)}$		
					$\frac{dx}{dy} = \frac{\pm k \cos^2(3y+1) \pm k \sin^2(3y+1)}{\cos^2(3y+1)} M1$		
					$=\frac{3}{\cos^2(3y+1)}$ A1		
(ii)	$\frac{\mathrm{d}x}{\mathrm{d}y} = 3\mathrm{sec}^2\left(3\times -\frac{1}{3}+1\right)$		M1		Substitution of $y = -\frac{1}{3}$ into their		
	$= 3 \text{sec}^2 0$				$\frac{dx}{dy}$ or $\frac{dy}{dx}$ BUT must have scored M1 in (a)(i)		
	$\frac{dy}{dt} = \frac{1}{dt}$	CSO	A1	2	Condone 0.333 or better		
	dx = 3				Or		
					$\frac{dy}{dx} = \frac{1}{3\sec^2(3y+1)}$		
					$=\frac{1}{3\sec^2 0}$ As above		
					$=\frac{1}{3}$		
3 (b)	$y \land \frac{\pi}{2}$				Approx correct shape with no turning points, through (0,0) and only 1 curve		
			M1		Asymptotic at both $\pm \frac{\pi}{2}$ and both values		
	x		Λ1	r	shown Condone + 90 (dogrees)		
			A1	4	Condone $y = \tan x$ also drawn but clearly		
	- <u>π</u> 2 -				identified, otherwise M0		
	Т	otal		6			

Mark Scheme – General Certificate of Education (A-level) Mathematics – Pr	ure Core 3 – January 2011

MPC3 (cont)			
Q	Solution	Marks	Total	Comments
4(a)	$-3 \leq f(x) \leq 3$	M1		$-3 \le x \le 3, -3 < f(x) < 3$
				-3 < f < 3, -3 < y < 3
				$-3 \le f < 3, -3 < f \le 3$
		A1	2	Allow $-3 \le v \le 3$, $-3 \le f \le 3$
			_	
	2 1			
(b)(1)	$y = 3\cos \frac{-x}{2}$			
	$y = \cos^{1} x$			
	$\frac{1}{3} = \cos \frac{1}{2}x$			
	$\cos^{-1}\frac{y}{z} = \left(\frac{1}{z}\right)$	M1		Or $\cos^{-1}\frac{x}{x} = $
	$3 \left(2^{x} \right)$	101 1		3
	$r = 2\cos^{-1}\frac{y}{2}$			Fither order
	3			
	$v=2\cos^{-1}\frac{x}{x}$	M1		Swap x and y
	3			
	$f^{-1}(x) = 2\cos^{-1}\frac{x}{2}$	A1	3	
	3			
	x 1			If incorrect in (b)(i) BUT answer
(ii)	$\frac{\pi}{3} = \cos \frac{\pi}{2}$	M1		in form $p \cos^{-1}(qx)$ (condone $p, q = 1$)
				(1)
	- 1		_	Then $qx = \cos\left(\frac{1}{p}\right)$ M1 or $x = f(1)$ M1
	$x = 3\cos{-2}$ ISW	Al	2	1
				$x = 3\cos\frac{1}{2}$ A1
$(\mathbf{c})(\mathbf{i})$	$\operatorname{gf}(\mathbf{r}) = \left 3\cos^{1} \mathbf{r} \right $	R1	1	
(()(1)	$ _{2}^{3} _{2}^{$	DI	1	
(ii)	3			Modulus graph in 1 st quadrant, starting
		M1		from a +ve y-intercept, at least 2 continuous parts first descending then
		1111		second increasing
				IGNORE CURVE OUTSIDE RANGE
	ι π 2π	A1		Correct curvature, curves reaching <i>x</i> -axis,
				condone multiple curves (no turning
		A1	3	Approximately symmetrical graph with
			5	$3, \pi, 2\pi$ indicated (must have scored
				previous 2 marks)
				Condone $y = 3\cos\frac{1}{2}x$ also drawn but
				clearly identified, otherwise M0
(b)	STRETCH + direction	M1		Either in x-direction or v-direction
()	s.f. 3, parallel to y-axis	A1		Fither order
	s.f. 2, parallel to <i>x</i> -axis	A1	3	
	Tota	1	14	

Mark Scheme – General	Certificate of Education	(A-level) Mathematics -	- Pure Core 3	– January 2011
		· · · · ·		

MPC3 (cont)							
Q	Solution	Marks	Total	Comments			
5(a)(i)	$\int \frac{1}{3+2x} dx$ $= k \ln (3+2x)$	M1		Where k is a rational number			
	$=\frac{1}{2}\ln\left(3+2x\right)+c$	A1	2	Or if substitution $u = 3 + 2x$, $du = 2dx$			
				$\int = \int \frac{1}{u^2} = k \ln u \qquad \text{M1}$			
				$=\frac{1}{2}\ln(3+2x)+c$ A1			
(b)	$u = x$ $dv = \sin \frac{x}{2}$	M1		$\int \sin \frac{x}{2} (dx) = k \cos \frac{x}{2}, \ \frac{d}{dx} (x) = 1$ where k is a constant			
	$du = 1 v = -2\cos\frac{x}{2}$	A1		All correct			
	$\int = -2x\cos\frac{x}{2} - \int -2\cos\frac{x}{2} (\mathrm{d}x)$	m1		Correct substitution of their terms into parts formula (watch signs carefully)			
	$= -2x\cos\frac{x}{2} + 4\sin\frac{x}{2} + c$	A1	4	CAO			
	Total		6				

MPC3 (cont)			
Q	Solution	Marks	Total	Comments
6(a)	x y	B1		Using 4 correct <i>x</i> -values, PI
	0.05 $\cos\sqrt{1.15}$ $= 0.4780$ 0.15 $\cos\sqrt{1.45}$ $= 0.3585$ 0.25 $\cos\sqrt{1.75}$ $= 0.2454$ 0.35 $\cos\sqrt{2.05}$ $= 0.1386$	M1		At least 3 correct <i>y</i> -values, (condone unsimplified correct expressions), Or correct values rounded to 2 s.f. or truncated to 2 s.f.
	$\begin{array}{l} 0.1 \times \Sigma y \\ = 0.122 \end{array} \qquad \qquad \text{CAO} \end{array}$	m1 A1	4	Used and must be working in radians Must be 3 s.f.
(b)	$\frac{\mathrm{d}u}{\mathrm{d}x} = 3$	M1		du = 3dx OE
	$\int = \int \left(\frac{u \pm 1}{3}\right) \sqrt{u} \times k \mathrm{d}u$	m1		All in terms of <i>u</i> , with $k = 3$ or $\frac{1}{3}$
	$= \left(\frac{1}{9}\right) \int u^{\frac{3}{2}} \pm u^{\frac{1}{2}} (\mathrm{d}u)$	m1		$p\int u^{\frac{3}{2}} \pm u^{\frac{1}{2}}(\mathrm{d}u)$
	$=\frac{1}{9}\left[\frac{u^{\frac{5}{2}}}{\frac{5}{2}}-\frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right]$	A1		(must have scored first 2 marks) OE
	$= \left(\frac{1}{9}\right) \left[\left(\frac{2}{5} \times 4^{\frac{5}{2}} - \frac{2}{3} \times 4^{\frac{3}{2}}\right) - \left(\frac{2}{5} - \frac{2}{3}\right) \right]$	m1		Must have earned all previous method marks and then correct substitution, into their integral, of 1, 4 for u or 0, 1 for x and subtracting
	$=\frac{110}{135}$ ISW	A1	6	Or equivalent fraction
	Total		10	

MPC3 (cont) Folution	Montra	Tatal	Commente
7(a)	Solution $\cos x = -0.2$		Total	Comments Or tan $r = (+) \sqrt{24}$
7(a)	x = 1.77 + 4.51 AWRT			One correct value
			2	Second correct value and no extra values
		AI	3	in interval 0 to 6.28
				Ignore answers outside interval
				SC
				x = 1.8, 4.5 with or without working
				M1 A1 A0
				SC (using degrees)
				101.54, 281.54 M1 A1 A0
				101.5, 281.5 M1 A0 A0
				SC
				No working shown
				2 correct answers 3/3
				1 correct answer 2/3
(b)	LHS			
	$= \frac{\operatorname{cosec} x(1 - \operatorname{cosec} x) - \operatorname{cosec} x(1 + \operatorname{cosec} x)}{x(1 + \operatorname{cosec} x)}$	M1		Correctly combining fractions but
	$(1 + \operatorname{cosec} x)(1 - \operatorname{cosec} x)$	1011		brackets
	$= \frac{\operatorname{cosec} x - \operatorname{cosec}^2 x - \operatorname{cosec}^2 x}{x - \operatorname{cosec}^2 x}$	A 1		Allow recovery from incorrect brackets
	$1 - \csc^2 x$			
	$=\frac{-2\csc^2 x}{\cos^2 x}$ or $\frac{-2(1+\cot^2 x)}{\cos^2 x}$	m1		Correct use of relevant trig identity
	$-\cot^2 x$ $-\cot^2 x$			eg cosec $x = 1 + \cot x$
	$2 \sec^2 x = 50$			All correct with no arrow scon
	$\sec^2 x = 25$ AG	A1	4	INCLUDING correct brackets on 1 st line
	Or			
	$\csc x \csc x 50$			
	$\frac{1}{1 + \csc x} - \frac{1}{1 - \csc x} = 50$			
	$\operatorname{cosec} x(1 - \operatorname{cosec} x) - \operatorname{cosec} x(1 + \operatorname{cosec} x)$			Correctly eliminating fractions but
	$= 50(1 + \operatorname{cosec} x)(1 - \operatorname{cosec} x)$	(M1)		brackets
	$\csc x - \csc^2 x - \csc x - \csc^2 x$			
	$=50(1-\csc^2 x)$	(A1)		Allow recovery from incorrect brackets
	$48 \operatorname{cosec}^2 x = 50$			
	$\sin^2 x = \frac{24}{2} \Longrightarrow \cos^2 x = \frac{1}{2}$	(m1)		Correct use of relevant trig identity $\frac{2}{2}$
	25 25 25	()		eg sin ⁻ $x = 1 - \cos^{-} x$
	$\sec^2 x = 25$ AG	(A1)		INCLUDING correct brackets on 1 st line

Mark Scheme – General Certificate of Education (A-level) Mathematics – Pure Core 3 – January 2011

MPC3 (cont)						
Q	Solution	Marks	Total	Comments		
7(c)	$\sec x = \pm 5$	M1		Or $\cos x = \pm 0.2$		
				Or $\tan x = \pm \sqrt{24}$		
	x = 1.77, 4.51, 1.37, 4.91 (AWRT)	A1		3 correct		
		A1	3	4 correct and no other answers in interval Ignore answers outside interval		
				SC 1.8, 4.5, 1.4, 4.9		
				With or without working M1 A1		
				SC their 2 answers from (a) +1.37, 4.91 (AWRT) 2/3		
				SC For this part, if in degrees max mark is M1 A0		
				SC		
				No working shown		
				4 correct answers 5/5		
				$0 \ 1 \ 2 \text{ correct answers} \ 0/3$		
	Tota	l	10			

MPC3 (cont)				
Q	Solution		Marks	Total	Comments
8 (a)	$e^{-2x} = 4$				
	$-2x = \ln 4$		M1		
	$x = -\frac{1}{2} \ln 4$	ISW	A1	2	OE, eg $\ln \frac{1}{2}$, $-\ln 2$, $\frac{\ln 4}{2}$
	2				2 –2
(b)(i)	(y =)3		B1	1	Condone $(0,3)$ but not $(3,0)$
(ii)	y = 0				
	$4e^{-2x} - e^{-4x} = 0$				
	$4e^{2x}-1=0$		M1		$a\mathrm{e}^{\pm 2x}\pm b=0$
	$e^{2x} = \frac{1}{4}$ or $e^{-2x} = 4$		A1		
	$x = \ln \frac{1}{2}$	ISW	A1	3	OE, eg $-\frac{1}{2}\ln 4$, $-\ln 2$, $\frac{1}{2}\ln \frac{1}{4}$
	2				and no extra solutions
	Or				
	$4\mathrm{e}^{-2x} = \mathrm{e}^{-4x}$				
	$\ln 4 - 2x = -4x$		(M1)		
	$2x = -\ln 4$		(A1)		OE
	$x = -\frac{1}{2}\ln 4$		(A1)		OE
(iii)	$(y' =) - 8e^{-2x} + 4e^{-4x}$		B1		
	$4e^{-4x} = 8e^{-2x}$		51		
	$2e^{2x} - 1 = 0$ or $e^{-2x} - 2 = 0$				Equating $\frac{dy}{dy} = 0$ and gatting
	or $e^{2x} = \frac{1}{2}$ or $e^{-2x} = 2$		M1		Equating $\frac{dx}{dx} = 0$ and getting
	or $\ln 4 - 4x = \ln 8 - 2x$				$ae^{\pm 2x} \pm b = 0$ from $\frac{dy}{dx} = pe^{-2x} + qe^{-4x}$
	$x = \frac{1}{2} \ln \frac{1}{2}$	ISW	A1	3	OE, eg $\frac{1}{2}(\ln 4 - \ln 8)$
	2 2				$\frac{2}{1}$ and no extra solutions
L					

MPC3 (cont	APC3 (cont)							
Q	Solution	Marks	Total	Comments				
8(b)(iv)	$V = \pi \int_{0}^{\ln 2} \left(4e^{-2x} - e^{-4x} \right)^2 dx$	B1		 Must be completely correct including dx seen on this line or next line Limits, brackets and π PI from later working 				
	$=(\pi)\int 16e^{-4x} + e^{-8x} - 8e^{-6x}(dx)$	B1		Correct expansion, PI from later working				
	$= (\pi) \left[-4e^{-4x} - \frac{1}{8}e^{-8x} + \frac{4e^{-6x}}{3} \right]_{(0)}^{(\ln 2)}$	B1		$\frac{16}{-4}e^{-4x} \text{ OE}$				
		B1		$-\frac{1}{8}e^{-8x}$ OE				
		B1		$\frac{-8}{-6}e^{-6x}$ OE may be two separate terms				
	$=(\pi)\left[\left(-4e^{-4\ln 2}-\frac{1}{8}e^{-8\ln 2}+\frac{4}{3}e^{-6\ln 2}\right)\right.\\\left\left(-4e^{0}-\frac{1}{8}e^{0}+\frac{4}{3}e^{0}\right)\right]$	M1		Correct substitution of $x = \ln 2$ and 0 into their integrated expression (must be of form $ae^{-4x} + be^{-6x} + ce^{-8x}$) and subtracting. PI				
	$=\frac{5247}{2048}\pi$	A1	7	OE exact fraction eg $\frac{251856}{98304}\pi$				
	Total		16					
	TOTAL		75					

Version 1.0

General Certificate of Education (A-level) June 2011

Mathematics

MPC3

(Specification 6360)

Pure Core 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.
М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MPC3 – Ju	MPC3 – June 2011					
Q	Solution	Marks	Total	Comments		
1 (a)	$\frac{1}{6}$ or $\left(\frac{1}{6}, 0\right)$	B1	1	condone 0.167 AWRT		
(b)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{1}{x}$	M1		$\frac{k}{x}$ where $k = 1, 6$ or $\frac{1}{6}$		
		A1	2	k = 1		
(c)	xy1 $\ln 6 = 1.7918$ 2 $\ln 12 = 2.4849$ 3 $\ln 18 = 2.8904$ 4 $\ln 24 = 3.1781$ 5 $\ln 30 = 3.4012$ 6 $\ln 36 = 3.5835$ 7 $\ln 42 = 3.7377$	M1 A1		5+ y-values correct, either exact or correct to 3SF (rounded or truncated) or better all 7 y-values correct (and only these 7 values), either exact or correct to 3SF (rounded or truncated) or better		
	$A = \frac{1}{3} \times 1 \left[(1.7918 + 3.7377) + 4(2.4849 + 3.1781 + 3.5835) + 2(2.8904 + 3.4012) \right]$ = 18.4	M1 A1	4	correct use of Simpson's rule on their 7 y-values, condone missing square brackets CAO this value only		
	Total		7			

MPC3 (cont)			
Q	Solution	Marks	Total	Comments
2(a)(i)	$y = xe^{2x}$ $\left(\frac{dy}{dx}\right) = 2xe^{2x} + e^{2x}$	M1 A1 A1 ISW	3	$kxe^{2x} + le^{2x} \text{ where } k \text{ and } l \text{ are 1s or 2s}$ $k = 2$ $l = 1$ Independent of each other $(=e^{2x}(2x+1))$
(ii)	$x=1 \Rightarrow \frac{dy}{dx} = 3e^{2}$ tangent: $y - e^{2} = 3e^{2}(x-1)$ OE	M1 A1	2	correct substitution of $x = 1$ into their $\frac{dy}{dx}$ but must have earned M1 in part (i) CSO (no ISW), must have scored first 4 marks common correct answer: $y = 3e^2x - 2e^2$
(b)	$y = \frac{2\sin 3x}{1 + \cos 3x}$ $\left(\frac{dy}{dx}\right) = \frac{(1 + \cos 3x)6\cos 3x - 2\sin 3x(-3\sin 3x)}{(1 + \cos 3x)^2}$	M1		$\frac{\pm p(1+\cos 3x)\cos 3x \pm q\sin 3x(\sin 3x)}{(1+\cos 3x)^2}$ where p and q are rational numbers condone poor use/omission of brackets PI by further working
	$=\frac{6\cos 3x + 6\cos^2 3x + 6\sin^2 3x}{(1+\cos 3x)^2}$	A1		this line must be seen in this form (ie in terms of $\cos^2 3x$ and $\sin^2 3x$), but allow $\sin^2 3x$ replaced by $1 - \cos^2 3x$ condone denominator correctly expanded
	$=\frac{6\cos 3x+6}{(1+\cos 3x)^2}$	m1		correct use of $k \sin^2 3x + k \cos^2 3x = k$ or $k \sin^2 3x = k (1 - \cos^2 3x)$
	$=\frac{1+\cos 3x}{1+\cos 3x}$	Al	4 	

MPC3 (cont)			
Q	Solution	Marks	Total	Comments
3(a)	note: if degrees used then no marks in (a) and (c) $f(x) = \cos^{-1}(2x-1) - e^x$ f(0.4) = 0.3 f(0.5) = -0.1 change of sign $\therefore 0.4 < \alpha < 0.5$	M1 A1 (M1)	2	or reverse sight of ±0.3 (AWRT) AND \mp 0.1 (AWRT) CSO, note f (x) must be defined, condone $0.4 \le \alpha \le 0.5$ alternative method $e^{0.4} = 1.5$, $\cos^{-1} (2 \times 0.4 - 1) = 1.8$ $e^{0.5} = 1.65$, $\cos^{-1} (2 \times 0.5 - 1) = 1.57$ at $0.4 e^x < \cos^{-1} (2x - 1)$ $at 0.5 e^x > \cos^{-1} (2x - 1)$ $\therefore 0.4 < \alpha < 0.5$
(b)	$\cos^{-1}(2x-1) = e^x$ $2x-1 = \cos(e^x)$			
	$x = \frac{1}{2} \left(\cos(e^x) + 1 \right) = \frac{1}{2} + \frac{1}{2} \cos(e^x)$	B1	1	AG must see middle line, and no errors seen, but condone $\cos e^x$
(c)	$x_1 = 0.4$ $x_1 = 0.539$	B1		CAO
	$x_2 = 0.009$ $x_3 = 0.428$	B1	2	CAO
	Total		5	

4(a)(i) $(\sin^{-1} \pm 0.25 =) \pm 14.5$ M1A1PI by sight of 194.5 etc condone ± 14.4 no extras in interval, ignore answers outside interval(ii) $2\cot^2(2x+30) = 2 - 7\csc(2x+30)$ $2(\csc^2(2x+30) = 1) = 2 - 7\csc(2x+30)$ M1 2 condone replacing $2x + 30$ by Y correct use of $\csc^2Y = 1 + \cot^2 Y$ must be in this form attempt at factorisation must be in this form attempt at factorisation must be this line using f $(2x + 30)$ (b)stretch (I) scale factor $\frac{1}{2}$ (II) parallel to x-axis (III)B1 A1 A1 A1 B1Tand either II or III $1 + 1I + III$ (b)stretch (I) scale factor $\frac{1}{2}$ 0 M1 $2 - 30$ M1 $2 - 30$ Tand either II or III $1 + 1I + III$ $2 - 30 = 30$ $2 - 30$ M1 $2 - 30$ $3 = 30$ M1 $3 = 30$ M1 $3 = 30$ (b)stretch (I) scale factor $\frac{1}{2}$ (II) 0 0 M1 $3 = 30$ $1 = 30$ M1 $3 = 30$ $1 = 1 = 30$ (b)stretch (I) scale factor $\frac{1}{2}$ 0 M1 $1 = 1 = 100$ M1 $1 = 1 = 1000$ (b)stretch (I) scale factor $\frac{1}{2}$ 0 M1 $1 = 10000$ M1 $1 = 10000000000000000000000000000000000$	Q	Solution	Marks	Total	Comments
(ii) $2\cot^{2}(2x+30)=2-7\csc(2x+30)$ $2(\csc^{2}(2x+30)-1)=2-7\csc(2x+30)$ M1 $2(\csc^{2}(2x+30)+7\csc(2x+30)-4(=0)$ A1 $2\csc^{2}(2x+30)\pm 1)(\csc(2x+30)\pm 4)(=0)$ m1 $2\csc^{2}(2x+30)\pm 1)(\csc(2x+30)\pm 4)(=0)$ m1 $\csc(2x+30)=\frac{1}{2}$ or -4 A1 2x+30=194.5, 345.5 x=82.2, 157.8 (AWRT) B1 B1 6 (b) stretch (I) scale factor $\frac{1}{2}$ (II) parallel to x-axis (III) M1 A1 Translate (E1) $\begin{pmatrix} -30\\ 0 \\ 0 \end{pmatrix}$ (B1) stretch scale factor $\frac{1}{2}$ parallel to x-axis (A1) (A1) Condone replacing $2x + 30$ by $Ycorrect use of \csc^{2}Y = 1 + \cot^{2}Ymust be in this formattempt at factorisationmust be this line using f(2x + 30)CAO both answers correct and no extras in interval, ignore answers outside interval I and either II or III1 + II + IIII$ and either II or III 1 + II + III I and either II or III 1 + II + III 3 as above 3 as above 3 as above 3 as above	4(a)(i)	$(\sin^{-1} \pm 0.25 =) \pm 14.5$ $\theta = 194.5, 345.5$ (AWRT)	M1 A1	2	PI by sight of 194.5 etc condone ± 14.4 no extras in interval, ignore answers outside interval
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(ii)	$2\cot^{2}(2x+30) = 2-7\csc(2x+30)$ $2(\csc^{2}(2x+30)-1) = 2-7\csc(2x+30)$ $2\csc^{2}(2x+30) + 7\csc(2x+30) - 4(=0)$ $(2\csc(2x+30)\pm1)(\csc(2x+30)\pm4)(=0)$ $\csc(2x+30) = \frac{1}{2} \text{ or } -4$	M1 A1 m1 A1		condone replacing $2x + 30$ by <i>Y</i> correct use of $\csc^2 Y = 1 + \cot^2 Y$ must be in this form attempt at factorisation must be this line using f (2 <i>x</i> + 30)
(b) stretch (I) scale factor $\frac{1}{2}$ (II) parallel to x-axis (III) translate $\begin{pmatrix} -15\\0 \end{pmatrix}$ alternative method translate $\begin{pmatrix} -30\\0 \end{pmatrix}$ stretch scale factor $\frac{1}{2}$ parallel to x-axis (A1) $\begin{pmatrix} -30\\0 \end{pmatrix}$ (B1) (A1) (A1) (B1) (A1)		2x + 30 = 194.5, 345.5 x = 82.2, 157.8 (AWRT)	B1 B1	6	one correct answer, allow 82.3, ignore extra solutions CAO both answers correct and no extras in interval, ignore answers outside interval
Total 12	(b)	stretch (I) scale factor $\frac{1}{2}$ (II) parallel to <i>x</i> -axis (III) translate $\begin{pmatrix} -15\\ 0 \end{pmatrix}$ alternative method translate $\begin{pmatrix} -30\\ 0 \end{pmatrix}$ stretch scale factor $\frac{1}{2}$ parallel to <i>x</i> -axis	M1 A1 E1 B1 (E1) (B1) (M1) (A1)	4	I and either II or III I + II + III condone '15 to left' or '-15 in <i>x</i> (direction)' as above as above
		Total		12	

Q	Solution	Marks	Total	Comments
5(a)	$\left[f(x) \right]$ not $1-1$	E1	1	OE
(b)	$y = \frac{1}{2x+1}$			
	$x = \frac{1}{2y+1}$	M1		swap x and y $\left\{\begin{array}{c} x \\ y \end{array}\right\}$
	$2y + 1 = \frac{1}{x}$	M1		a correct next line \int
	$\left[g^{-1}(x)\right] = \frac{1}{2} \left(\frac{1}{x} - 1\right) \text{OE}$	A1	3	$[y=]\frac{1}{2}\left(\frac{1}{x}-1\right)$
(c)	$\left[g^{-1}(x)\right] \neq -0.5$	B1	1	sight of $\neq -0.5$ OE
(d)	$\left(\frac{1}{2x+1}\right)^2 = \frac{1}{2x+1}$	B1		sight of $\left(\frac{1}{2x+1}\right)^2$ or $\frac{1}{\left(2x+1\right)^2}$
	$(2x+1) = (2x+1)^2$			
	or $2x+1=4x^2+4x+1$	M1		one correct step, must be one of these four
	or $\frac{1}{2x+1} = 1$			lines
	or $2x + 1 = 1$ x = 0	A1	3	CSO
	Total		8	
6(a)	$3\ln x = 4$ $\left(\ln x = \frac{4}{3}\right)$			
	$x = e^{\frac{4}{3}}$	B1	1	ISW. Condone $\sqrt[3]{e^4}$
(b)	$3\ln x + \frac{20}{\ln x} = 19$			
	$3(\ln x)^2 + 20 = 19\ln x$	M1		correctly multiplying by ln <i>x</i> .
	$3(\ln x)^2 - 19\ln x + 20(=0)$	A1		
	$(3\ln x \pm 4)(\ln x \pm 5)(=0)$	m1		use of formula, or completing the square must be correct
	$\ln x = \frac{4}{3}, 5$	A1		
	$x = e^{\frac{4}{3}}, e^{5}$	A1	5	condone $\sqrt[3]{e^4}$
	Total		6	

Q	Solution	Marks	Total	Comments
7(a)(i)				
	3	M1		modulus graph, approximate V shape, touching negative <i>x</i> -axis and crossing <i>y</i> - axis
	-1	A1	2	-1, 3 marked, graph symmetrical, straight lines
(ii)		M1		modulus graph in 3 sections, touching <i>x</i> -axis and crossing positive <i>y</i> -axis
		A1		their $x > 1$, their $x < -1$ independent
	-1 1	A1	3	correct curve $-1 \le x \le 1$ and $x = \pm 1$, $y = 1$ marked
(b)(i)	$\left 3x+3\right = \left x^2-1\right $			
	$(3x+3 = x^2 - 1)$	N/1		
	(0=) x -3x - 4 —A x = 4, -1	MI A1,A1		either A or B seen, all terms on one side
	$\left(3x+3=1-x^2\right)$			
	$x^{2} + 3x + 2 (= 0)$ —B x = -1, -2	A1,A1		
			5	$\therefore x = -2, -1, 4$
				1 correct value 1/5
				3 correct values 5/5 method mark
(**)				more than 3 distinct values max 2/3
(11)				
	x > 4, x < -2	M1,A1	2	x > their largest, $x <$ their smallest; CAO
	Total		12	

MPC3	(cont)

Q	Solution	Marks	Total	Comments
8	$\int \frac{1}{\cos^2 x (1+2\tan x)^2} dx$ $u = 1+2\tan x$			
	$\left(\frac{\mathrm{d}u}{\mathrm{d}x}\right) 2 \sec^2 x \mathrm{OE}$	M1		condone $\left(\frac{\mathrm{d}u}{\mathrm{d}x}\right) = a \sec^2 x$ where <i>a</i> is a constant
	$\int = \int \frac{\mathrm{d}u}{2u^2}$	m1		$\int \frac{k}{u^2} (du)$, where k is a constant
		A1		correct, or $\frac{1}{2}\int u^{-2}(\mathrm{d}u)$
	$=\frac{1}{2}\frac{u^{-1}}{-1}$	A1F		correct integral of their expression but must have scored M1 m1
	$=-\frac{1}{2u}$			
	$= -\frac{1}{2(1+2\tan x)}(+c)$	A1	5	CSO, no ISW
	Total		5	

Q	Solution	Marks	Total	Comments
9 (a)	$\int x \ln x dx$			
	$u = \ln x \qquad \frac{dv}{(dx)} = x$ $\frac{du}{(dx)} = \frac{1}{x} \qquad v = \frac{x^2}{2}$	M1		correct direction and sight of $\frac{1}{x}$, $\frac{x^2}{2}$
	$\int = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \times \frac{1}{x} (dx)$	A1		
	$=\frac{x^2}{2}\ln x - \frac{x^2}{4}(+c)$	A1	3	
(b)	$y = (\ln x)^2$			
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 2\ln x \times \frac{1}{x}$	M1		$\frac{k}{x} \ln x$ where $k = \frac{1}{2}$, 1 or 2
		A1	2	<i>k</i> = 2
(c)	$y = \sqrt{x} \ln x$			
	$(V=)\pi\int_{1}^{e}x(\ln x)^{2}\mathrm{d}x$	B1		all correct, incl brackets, π , limits and dx (but dx may be seen BEFORE this line)
	$u = (\ln x)^{2} \qquad \frac{\mathrm{d}v}{(\mathrm{d}x)} = x$ $\frac{\mathrm{d}u}{(\mathrm{d}x)} = 2\ln x \frac{1}{x} \qquad v = \frac{x^{2}}{2}$	M1		correct direction with $\frac{du}{(dx)} = \frac{k}{x} \ln x$ where $k = \frac{1}{2}$, 1 or 2 and sight of $\frac{x^2}{2}$
	$\int = \frac{x^2}{2} (\ln x)^2 - \int \frac{x^2}{2} \times \frac{2}{x} \ln x (dx)$	m1		correct substitution of their terms into the parts formula
	$=\frac{x^{2}}{2}(\ln x)^{2} - \int x \ln x (dx)$	A1		integral needs to be simplified to $\int x \ln x$
	$=\frac{x^{2}}{2}(\ln x)^{2}-\frac{1}{4}x^{2}(2\ln x-1)$ OE			
	$V = (\pi) \left[\frac{x^2}{2} (\ln x)^2 - \frac{1}{4} x^2 (2 \ln x - 1) \right]_1^e$			
	$= (\pi) \left[\left(\frac{e^2}{2} - \frac{1}{4}e^2 \right) - \left(0 + \frac{1}{4} \right) \right]$	m1		correct substitution of 1 and e into their expressions of the form $px^2(\ln x)^2 + qx^2 \ln x + rx^2$ where p, q and
				intention to subtract Do not condone $F(1) - F(e)$
	$=\frac{\pi}{4}\left[e^2-1\right] \qquad \mathbf{OE}$	A1	6	$\pi \left[\frac{e^2}{4} - \frac{1}{4} \right] \text{ etc}$
	Tatal		11	
	TOTAL		75	

General Certificate of Education (A-level) January 2012

Mathematics

MPC3

(Specification 6360)

Pure Core 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

PMT

Q	Solution	Marks	Total	Comments
1(a)	$\begin{array}{c c c} x & y \\ \hline 0 & 1 \\ \frac{1}{2} & 2 \end{array}$	B1		all 7 x values correct (and no extra) (PI by 7 correct y values)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1		5 or more correct <i>y</i> values, exact $\left(4^{\frac{1}{2}}, 4^{1}\right)$ or evaluated (in table or in formula)
	$A = \frac{1}{3} \times \frac{1}{2} \left[65 + 4 \times 42 + 2 \times 20 \right]$	M1		correct substitution of their 7 <i>y</i> -values into Simpson's rule
	$=\frac{91}{2}$ or 45.5 or $\frac{273}{6}$	A1	4	CAO
(b)(i)	f (x) = $4^x + 2x - 8$ or g(x) = $8 - 2x - 4^x$ f (1.2) = -0.3 or g(1.2) = 0.3 f (1.3) = 0.7 or g(1.3) = -0.7 AWRT ±0.3 and ±0.7 condone f (1.2) < 0, f (1.3) > 0 if f is defined change of sign $\therefore 1.2 < \alpha < 1.3$	M1	2	attempt at evaluating $f(1.2)$ and $f(1.3)$ alternative method $4^{1.2} = 5.3, 8 - 2 \times 1.2 = 5.6$ $4^{1.3} = 6.1, 8 - 2 \times 1.3 = 5.4$ M1 at 1.2 LUS \leq BUS
	(f(x) must be defined and all working correct)	AI	2	at 1.2 LHS < RHS at 1.3 LHS > RHS \therefore 1.2 < α < 1.3 A1
(ii)	$(x_2 =)1.243$	B1		
	$(x_3 =)1.232$	B1	2	these values only
	Total		8	

PMT

MPC3	(cont)
------	--------

Q	Solution	Marks	Total	Comments
2(a)	$ \begin{cases} f(1) = 21 \\ f(16) = 1 \end{cases} $	M1		sight of 1 and 21
	$1 \le f(x) \le 21$	A1	2	allow $f(x)$ replaced by f, y
(b)(i)	$y = \frac{63}{4x - 1}$			
	$x = \frac{63}{4y - 1}$	M1		reverse x, y Fither order
	x(4y-1) = 63 or better	M1		one correct step
	$f^{-1}(x) = \frac{1}{4}\left(\frac{63}{x} + 1\right)$ OE	A1	3	condone <i>y</i> =
(ii)	$\frac{1}{4}\left(\frac{63}{x}+1\right) = 1$			
	$\frac{63}{x} + 1 = 4$, or better	M1		one correct step from their (b)(i) = 1, or $x = f(1)$
	(<i>x</i> =) 21	A1	2	note: 21 scores 2/2
(a)(i)	$(fg(x) =) - \frac{63}{63}$	D1	1	
(0)(1)	$(18(x))^{-1} 4x^2 - 1$	DI	1	
(ii)	$\frac{63}{4r^2-1} = 1$			
	$4x^2 - 1 = 63$ or better	M1		one correct step from their $(c)(i) = 1$
	$x^2 = 16 \text{ OE}$	A1	2	eg $(2x+8)(2x-8) = 0$, or $x = \pm 4$
	x = -4 UNLY	Al	3	
	Total		11	

MPC3 (cont	cont)				
Q	Solution	Marks	Total	Comments	
3(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 12x^2 - 6$	B1	1	do not ISW	
(b)	$\int_{2}^{3} \frac{2x^{2} - 1}{4x^{3} - 6x + 1} dx$ $= \left[\frac{1}{6} \ln \left(4x^{3} - 6x + 1 \right) \right]_{(2)}^{(3)}$ $= \frac{1}{6} \ln \left(4 \times 3^{3} - 6 \times 3 + 1 \right)$ $- \frac{1}{6} \ln \left(4 \times 2^{3} - 6 \times 2 + 1 \right)$ $= \frac{1}{6} \ln 91 - \frac{1}{6} \ln 21$ $= \frac{1}{6} \ln \frac{91}{21} \text{ or } \left(= \frac{1}{6} \ln \frac{13}{3} \right)$	M1 A1 m1 A1F A1	5	$k \ln (4x^{3} - 6x + 1), k \text{ is a constant}$ $k = \frac{1}{6}$ correct substitution in F(3) – F(2). condone poor use or lack of brackets. $k \ln 91 - k \ln 21$ only follow through on their k or if using the substitution $u = 4x^{3} - 6x + 1$ $\int = k \int \frac{du}{u}$ M1 $= \frac{1}{6} \ln u$ A1 then, either change limits to 21 and 91 m1 then A1F A1 as scheme or changing back to 'x', then m1 A1F A1 as scheme	
	Total		6		
4(a)	$\cos^2 \theta = 1$	D1		correct use of $\cos^2 \theta - 1 + \tan^2 \theta$	
4(a)	sec $\theta - 1 = \dots$	BI		correct use of sec $\theta = 1 + \tan \theta$ quadratic expression in sec θ with all	
	$\sec^2 \theta + 3\sec \theta - 10 \ (=0)$	M1		terms on one side	
	$(\sec\theta+5)(\sec\theta-2)=0$	ml		attempt at factors of their quadratic, $(\sec\theta \pm 5)(\sec\theta \pm 2)$,	
	$\sec\theta = -5, 2$	A1		or correct use of quadratic formula	
	$\left(\cos\theta = -\frac{1}{5}, \frac{1}{2}\right)$				
	$60^{\circ}, 300^{\circ}, 101.5^{\circ}, 258.5^{\circ}$ (AWRT)	B1 B1	6	3 correct, ignore answers outside interval all correct, no extras in interval	
(b)	$4x - 10^{\circ} = 60^{\circ}, 101 \cdot 5^{\circ}, 258 \cdot 5^{\circ}, 300^{\circ}$	M1		4x - 10 = any of their (60),	
	$4x = 70^{\circ}, 111 \cdot 5^{\circ}, 268 \cdot 5^{\circ}, 310^{\circ}$	A1F		all their answers from (a), BUT must have scored B1	
	$x = 17 \cdot 5^{\circ}, 27 \cdot 9^{\circ}, 67.1^{\circ}, 77 \cdot 5^{\circ}$ (AWRT)	A1	3	CAO, ignore answers outside interval	
	Total		9		
		•		•	

Solution	Marks	Total	Comments
I II III	M1A1		I + (II or III)
	E1		
	B1	4	accept 'e in positive <i>x</i> -direction'
	M1		mod graph, in 2 connected sections, both

			if B2 not earned, then SC1 for any of $e \le x \le e + \frac{1}{e}, e < x < e + \frac{1}{e}, e \le x < e + \frac{1}{e}$
$e < x \le e + \frac{1}{e}$	B2	3	accept values of AWRT 2.72, 3.08, 3.09
$x \ge 2e$	B1		accept values of AWRT 5.42, 5.43, 5.44
č			if M0 then $x = 2e$ with or without working scores SC1
$(x=)e+e^{-1}$ or $(x=)e+\frac{1}{e}$ do not ISW	A1	3	accept values of AWRT 3.08, 3.09
(x =) 2e do not ISW	A1		accept values of AWRT 5.42, 5.43, 5.44
$4\ln(x-e) = 4$ $4\ln(x-e) = -4$ or better	M1		must see 2 equations, condone omission of brackets
$\left 4\ln(x-e) \right = 4$			
e 1+e	A1	3	correct curvature, including at their 1+ e, approx. asymptote at $x = e$
	A1		curve touches x-axis at $1 + e$ (or 3.7 or better), and labelled (ignore scale)
	M1		mod graph, in 2 connected sections, both in the first quadrant, touching <i>x</i> -axis
$\begin{pmatrix} e \\ 0 \end{pmatrix} \qquad \qquad \int {}^{e}$	B1	4	accept 'e in positive <i>x</i> -direction'
	$\begin{pmatrix} e \\ 0 \end{pmatrix}$ $\begin{pmatrix} e $	$\begin{pmatrix} e \\ 0 \end{pmatrix} \qquad B1$ $M1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ A	$\begin{pmatrix} e \\ 0 \end{pmatrix} \qquad \qquad B1 \qquad 4$ $M1 \qquad A1 \qquad A1 \qquad A1$ $A1 \qquad A1 \qquad A1$ $(x-e) = 4 \qquad 4\ln(x-e) = -4$ $M1 \qquad A1$ $(x=) e + e^{-1} \text{ or } (x=) e + \frac{1}{e} do \text{ not ISW}$ $A1 \qquad A1$ $x \ge 2e \qquad B1$ $e < x \le e + \frac{1}{e} \qquad B2 \qquad 3$

5(a)

stretch

translate

SF 4 in y-direction

Q	Solution	Marks	Total	Comments
6(a)	$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right) = \frac{\sin\theta \times 0 - 1 \times \cos\theta}{\sin^2\theta}$	M1		quotient rule $\frac{\pm \sin \theta \times k \pm 1 \times \cos \theta}{\sin^2 \theta}$ where $k = 0$ or 1
		A1		must see the '0' either in the quotient or in eg $\frac{du}{d\theta} = 0$ etc
	$= -\frac{\cos\theta}{\sin^2\theta}$ or $= -\frac{\cos\theta}{\sin\theta\sin\theta}$			or equivalent
	$= -\csc\theta \cot\theta$	A1	3	CSO, AG must see one of the previous expressions
(b)	$x = \operatorname{cosec} \theta$			
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -\operatorname{cosec}\theta\cot\theta$	B1		OE, eg $dx = -\csc\theta \cot\theta d\theta$
	Replacing $\sqrt{(\csc^2\theta - 1)}$ by $\sqrt{\cot^2\theta}$, or better	B1		at any stage of solution
	$\int = \int \frac{-\csc\theta \cot\theta}{\csc^2\theta \sqrt{(\csc^2\theta - 1)}} d\theta$	M1		all in terms of θ , and including their attempt at dx, but condone omission of d θ
		A1		fully correct and must include $d\theta$ (at some stage in solution)
	$\int \frac{-\operatorname{cosec} \theta \cot \theta}{\operatorname{cosec}^2 \theta \cot \theta} (\mathrm{d}\theta)$			
	$=\int \frac{-1}{\operatorname{cosec} \theta} \left(\mathrm{d} \theta \right)$	A1		OE eg $\int -\sin\theta(d\theta)$
	$=\cos\theta$	A1		
	$x = 2, \ \theta = 0.524 \text{ AWRT}$ $x = \sqrt{2}, \ \theta = 0.785 \text{ AWRT}$	B1		correct change of limits
				or $(\pm)\cos\theta = (\pm)\left[\sqrt{\left(1-\frac{1}{x^2}\right)}\right]_{\sqrt{2}}^2$ OE
	0.8660 - 0.7071	ml		c's $F(0.52) - F(0.79)$ substitution into $\pm \cos \theta$ only
				or $\left(\frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}}\right)$
	= 0.159	A1	9	
	Total		12	

Q	Solution	Marks	Total	Comments
	$\begin{bmatrix} dy \end{bmatrix} -\frac{1}{2}x - \frac{1}{2}x$	M1		p, q constants
7(a)	$\left\lfloor \frac{dy}{dx} \right\rfloor p e^{-4} x^2 + qx e^{-4}$	A1		$p = -\frac{1}{4}$ and $q = 2$
	$\left[\Rightarrow e^{-\frac{1}{4}x} \left(-\frac{1}{4}x^2 + 2x \right) = 0 \right]$			
	$e^{-\frac{1}{4}x} \neq 0$	E1		or $e^{-\frac{1}{4}x} = 0$ impossible OE (may be seen later)
	$\left(e^{-\frac{1}{4}x}\right)\left(ax^2+bx\right)=0$	m1		or $e^{-\frac{1}{4}x}x(ax+b)=0$
	x = 0, 8 x = 0, y = 0	A1 A1		
	$x = 8, y = 64e^{-2}$	B1	7	condone $y = 8^2 e^{-\frac{8}{4}}$ etc
(b)(i)	$\int x^2 e^{-\frac{1}{4}x} dx \qquad u = x^2 \frac{dv}{dx} = e^{-\frac{1}{4}x}$ $\frac{du}{dx} = 2x \qquad v = k e^{-\frac{1}{4}x}$	M1		where <i>k</i> is a constant
	$dx \qquad \qquad dx \qquad $	A1		
	$-4x^2 e^{-\frac{1}{4}x} - \int -4e^{-\frac{1}{4}x} \times 2x(dx)$, or better	A1F		correct substitution of their terms
	$u = mx$ $\frac{\mathrm{d}v}{\mathrm{d}x} = n\mathrm{e}^{-\frac{1}{4}x}$			
	$\frac{\mathrm{d}u}{\mathrm{d}x} = m \qquad v = -4n\mathrm{e}^{-\frac{1}{4}x}$	m1		both differentiation and integration must be correct
	$\int = -4x^2 e^{-\frac{1}{4}x} + 8\left(-4x e^{-\frac{1}{4}x} + \int 4e^{-\frac{1}{4}x} dx\right)$			
	$= \left[-4x^2 e^{-\frac{1}{4}x} - 32x e^{-\frac{1}{4}x} - 128 e^{-\frac{1}{4}x} \right]_{(0)}^{(4)}$	Al		
	$= -e^{-1} [64 + 256] - [-128]$	m1 (dep on M1 only)		correct substitution and attempt at subtraction in $ax^2e^{-\frac{1}{4}x} + bxe^{-\frac{1}{4}x} + ce^{-\frac{1}{4}x}$ (may be in 3 stages)
	$=128 - \frac{320}{e}$	A1	7	or $128 - 320e^{-1}$ ignore further numerical evaluation
(ii)	$v = \pi \int_{(0)}^{(4)} 9x^2 e^{-\frac{1}{4}x} (dx)$	M1		condone omission of brackets, limits
	$=9\pi\left(128-\frac{320}{e}\right)$	A1F	2	$9\pi \times (\text{their exact b}(i))$
	Total	ļ	16	
	TOTAL		75	

Version 1,0

General Certificate of Education (A-level) June 2012

Mathematics

MPC3

(Specification 6360)

Pure Core 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q		Solution		Marks	Total	Comments
1	$ \begin{array}{r} x \\ 0.5 \\ 0.7 \\ 0.9 \\ 1.1 \end{array} $	y 3.9163 1.8748 0.9520 0.3773		B1 M1		All 4 correct <i>x</i> values (and no extras used) 3+ <i>y</i> decimal values rounded or truncated to 2 dp or better (in table or in formula) (PI by correct answer)
	$\int = 0.2 \times 2$ $(= 0.2 \times 2$ $= 1.424$	∑ y 7.12)		m1 A1	4	Correct substitution of their 4 y values (of which 3 are correct), either listed or totalled CAO
			Total		4	

0	Solution	Marks	Total	Comments
2(a)	$f(x) = 4\ln x - \sqrt{x}$			Or reverse
	$ \begin{array}{c} f(0.5) = -3.5 \\ f(1.5) = 0.4 \end{array} \right\} $ must have both values correct	M1		Allow $f(0.5) < 0$ and $f(1.5) > 0$ only if $f(x)$ defined
	Change of sign $\therefore 0.5 < \alpha < 1.5$	A1	2	f(x) must be defined and all working correct, including both statement and interval (either may be written in words or symbols)
				OR comparing 2 sides: $4\ln 0.5 = -2.8 = \sqrt{0.5} = 0.7$
				$\begin{array}{c} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 4 & 1 & 1 & 5 \\ 1 & 1 & 5 \\ 1 & 1 & 5 \\ 1 & 1 & 5 \\ 1 & 1 & 5 \\ 1 & 1 & 5 \\ 1 & 1 & 5 \\ 1 & 1 & 5 \\ 1 & 1 & 5 \\ 1 & 1 & 5 \\ 1 & 1 & 5 \\ 1 & 1 & 5 \\ 1 & 1 & 5 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$
				At 0.5, LHS < RHS; at 1.5, LHS > RHS $\therefore 0.5 < \alpha < 1.5$ (A1)
(b)	$\ln x = \frac{\sqrt{x}}{4} \qquad \text{or} x^4 = e^{\sqrt{x}}$			Must be seen
	$x = e^{\frac{\sqrt{x}}{4}}$	B1	1	AG; no errors seen
(c)	$x_2 = 1.193$ $x_3 = 1.314$	B1 B1	2	If B0B0 scored but either value seen correct to 2 or 4 dp, score SC1
(d)	t			
		M1		Vertical line from x_1 to curve (condone omission from <i>x</i> -axis to $y = x$) and then horizontal to $y = x$
	x_1 x_2 x_3	A1	2	2^{nd} vertical and horizontal lines, and x_2 , x_3 (not the values) must be labelled on <i>x</i> -axis
	Total		7	
			1	1

Q	Solution	Marks	Total	Comments
3(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = x^3 \times \frac{1}{x} + 3x^2 \ln x$	M1		$px^3 \times \frac{1}{x} + qx^2 \ln x$ where p and q are integers
		A1	2	p = 1, q = 3
(b)(i)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = e^2 + 3e^2 \ln e \left(= 4e^2\right)$	M1		Substituting e for x in their $\frac{dy}{dx}$, but must have scored M1 in (a)
	$y = e^3 \ln e \ \left(= e^3\right)$	B1		
	$y - e^3 = 4e^2(x - e)$	A1	3	OE but must have evaluated ln e (twice) for this mark (must be in exact form, but condone numerical evaluation after correct equation)
(ii)	$-e^{3} = 4e^{2}(x-e)$ or $4e^{2}x = 3e^{3}$ OE	M1		Correctly substituting $y = 0$ into a correct tangent equation in (b)(i)
	$x = \frac{3}{4}e$	A1	2	CSO; ignore subsequent decimal evaluation
	Total		7	
4(a)	$\int x e^{6x} dx$			
	$u = x \frac{\mathrm{d}v}{(\mathrm{d}x)} = \mathrm{e}^{6x} $	M1		All 4 terms in this form, $k = \frac{1}{6}$, 1 or 6
	$\frac{\mathrm{d}u}{(\mathrm{d}x)} = 1 v = k\mathrm{e}^{6x}$	A1		$k = \frac{1}{6}$
	$\frac{1}{6}xe^{6x} - \int \frac{1}{6}e^{6x} \left(dx \right)$	A1F		Correct substitution of their terms into parts formula
	$= \frac{1}{6}xe^{6x} - \frac{1}{36}e^{6x}(+c) OE$	A1	4	No ISW for incorrect simplification
(b)	$(V=) \pi \int_{0}^{1} x e^{6x} dx$	B1		Must include π , limits and dx
	$= \left(\pi\right) \left[\left(\frac{1}{6}e^6 - \frac{1}{36}e^6\right) - \left(-\frac{1}{36}\right) \right]$	M1		Correct substitution of 0 and 1 into their answer in (a), must be of the form $axe^{6x} - be^{6x}$, where $a > 0, b > 0$ and $F(1) - F(0)$ seen
	$=\pi\left[\frac{5}{36}e^{6}+\frac{1}{36}\right]$	A1	3	CAO; ISW
	Total		7	

Q	Solution	Marks	Total	Comments
5(a)	$f(x) \ge 0$	M1 A1	2	$f(x) > 0, f \ge 0, x \ge 0, y > 0, range \ge 0$ Condone $y \ge 0$
(b)(i)	$fg(x) = \sqrt{2\left(\frac{10}{x}\right) - 5}$ $\left(=\sqrt{\frac{20}{x} - 5}\right) OE$	B1	1	No ISW
(ii)	$\sqrt{\frac{20}{x} - 5} = 5$			
	$\frac{20}{x} = 5^2 + 5$	M1		Correctly squaring their $fg(x)$ and correctly isolating their <i>x</i> term
	$x = \frac{2}{3}$	A1	2	No ISW
(c)(i)	$y = \sqrt{2x - 5}$			
		M1 M1		Swap x and y Correctly squaring $\left\{ either order \right\}$
	$(f^{-1}(x) =) \frac{x^2 + 5}{2}$	A1	3	
(ii)	$x^2 = 9$ or if $\sqrt{9}$ or 3 seen	M1		Candidate must have scored full marks in (c)(i) (ie no follow through)
	x = 3 and $x = -3$ rejected	A1	2	Must see both
	Total		10	

Q	Solution	Marks	Total	Comments
6	$u = x^{4} + 2$ $\frac{du}{dx} = 4x^{3}$	B1		or $du = 4x^3 dx$
	$\int \frac{x}{(x^4 + 2)^2} dx$ = $\int \frac{k(u-2)}{u^2} du$ or $\int \frac{k(u-2)^{\frac{7}{4}}}{u^2} \frac{du}{(u-2)^{\frac{3}{4}}}$	M1		Either expression all in terms of u including replacing dx , but condone omission of du
	$= \left(\frac{1}{4}\right) \int \frac{1}{u} - \frac{2}{u^2} du$ $= \left(\frac{1}{4}\right) \left[\ln u + \frac{2}{u}\right]$	m1 A1		$k \int au^{-1} + bu^{-2} du$, where k, a, b are constants Must have seen du on an earlier line where every term is a term in u
	$\left(\int = \left(\frac{1}{4}\right) \left[\ln u + \frac{2}{u}\right]_{2}^{3}\right)$			$\left(\left(\frac{1}{4}\right)\left[\ln\left(x^4+2\right)+\frac{2}{\left(x^4+2\right)}\right]_0^1\right)$
	$=\left(\frac{1}{4}\right)\left[\left(\ln 3 + \frac{2}{3}\right) - \left(\ln 2 + 1\right)\right]$	ml		Dependent on previous A1
				Correct change of limits, correct substitution and $F(3) - F(2)$ or correct replacement of <i>u</i> , correct substitution and $F(1) - F(0)$
	$=\frac{1}{4}\ln\left(\frac{3}{2}\right) - \frac{1}{12}$	A1	6	OE in exact form
	Total		6	

Q	Solution	Marks	Total	Comments
7(a)		M1		Modulus graph, 4 sections touching x-axis at $-2, 1, 3$
		A1		Correct $x > 3$, $x < -2$
	-2 1 3	A1	3	Correct $-2 \le x \le 3$ with maximum at 2 lower than maximum at -1 and correct cusps at $x = -2$, $x = 1$ and $x = 3$ The maximums need to be at $x = -1$ and 2 (approx)
(b)		M1 A1	2	Symmetrical about <i>y</i> -axis, from original curve for $0 < x < 1$ and $x > 3$ Correct graph including cusp at $x = 0$
(c)	$\begin{bmatrix} Translate \\ -1 \end{bmatrix}$	E1		
	$\begin{bmatrix} 0 \end{bmatrix} \end{bmatrix}$ either order	DI		
	stretch (I) sf $\frac{1}{2}$ (II)	M1		I and (either II or III)
	//y-axis (III)	A1	4	I + II + III
(d)	$\begin{array}{l} x = -2 \\ y = 5 \end{array}$	B1 B1	2	Each value may be stated or shown as coordinates
	Total		11	

Q	Solution	Marks	Total	Comments
8 (a)	LHS = $\frac{(1 - \cos \theta) + (1 + \cos \theta)}{(1 + \cos \theta)(1 - \cos \theta)}$	M1		Combining fractions
	$=\frac{2}{1-\cos^2\theta}$	A1		Correctly simplified
	$=\frac{2}{\sin^2\theta}$	m1		Use of $\sin^2 \theta + \cos^2 \theta = 1$
	$2\csc^2\theta = 32$			
	$\csc^2\theta = 16$	A1	4	AG; no errors seen
				OR
				$1 - \cos\theta + 1 + \cos\theta = 32(1 + \cos\theta)(1 - \cos\theta)$
				$2 = 32\left(1 - \cos^2\theta\right) $ (A1)
				$2 = 32\sin^2\theta$ (m1)
				$\csc^2\theta = 16$ (A1)
(b)	cosec $y = (\pm)\sqrt{16}$ or better (PI by further working) (y =)	M1		or $\sin y = (\pm)\sqrt{\frac{1}{16}}$ or better
	0.253, (2.889,) (3.394,) (6.031,) (-0.253)	B1		Sight of any of these correct to 3dp or better
	(y =) 0.25, 2.89, 3.39 (or better)	A1		Must see these 3 answers, with or without either/both of -0.25 or 6.03 Ignore answers outside interval -0.25 to 6.03 but extras in this interval scores A0
	<i>x</i> = 0.43, 1.74, 2(.00), 0.17	B1 B1	5	3 correct (must be 2 dp) All 4 correct (must be 2 dp) and no extras in interval (ignore answers outside interval)
	Total		9	
	10tai	I	,	

Q	Solution	Marks	Total	Comments
9(a)	$\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right) = \frac{\cos y \times \cos y - \sin y \times -\sin y}{\cos^2 y}$	M1		Condone incorrect signs, poor notation, omission of $\frac{dx}{dy}$ or using $\frac{dy}{dx}$
	$=\frac{\cos^2 y + \sin^2 y}{\cos^2 y}$	A1		RHS correct with terms squared, including correct notation Must see this line
	$= \frac{1}{\cos^2 y} \text{or} (=1 + \tan^2 y)$ $\frac{dx}{dy} = \sec^2 y$	A1 CSO	3	Must see one of these AG; all correct including correct use of $\frac{dx}{dy}$ throughout
(b)	$\sec^2 y = 1 + (x - 1)^2$	M1		Correct use of $\sec^2 y = 1 + \tan^2 y$ and in terms of x
	$= x^{2} - 2x + 1$ OL = $x^{2} - 2x + 2$	A1	2	AG; must see "sec ² $y =$ ", $(x-1)^2$ expanded and no errors seen
(c)	$\frac{dx}{dy} = x^2 - 2x + 2 \text{or} \frac{dy}{dx} = \frac{1}{\sec^2 y}$			Must be seen
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x^2 - 2x + 2}$	B1	1	AG and no errors seen

Q	Solution	Marks	Total	Comments
9 cont				
(d)(i)	$y = \tan^{-1} \left(x - 1 \right) - \ln x$			
	$\left(\frac{dy}{dx}\right) = \frac{1}{x^2 - 2x + 2} - \frac{1}{x}$	M1		Must be correct
	$(\mathbf{u}_{x}) x = 2x + 2 x$			
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}=0\right)$			
	$\pm x^2 + bx + c \ (=0)$	m1		Expression in this form (generous), where b and $c \neq 0$
	$x^2 - 3x + 2 = 0$	A1		Must see correct equation = 0
	<i>x</i> = 1, 2	A1	4	Both answers must be seen
				The two A marks are independent
(ii)		M1		$y'' = p(x^2 - 2x + 2)^{-2} (2x - 2) \pm qx^{-2}$
()				where p and q are constants
	$y'' = -(x^2 - 2x + 2)^{-2}(2x - 2) + x^{-2}$	A1	2	p = -1, $q = 1$ including correct brackets
(iii)	x = 1, y'' = 1	M1		Must have scored full marks in (d)(i) and (ii)
	At $x = 1$, $y'' > 0$ \therefore min			Must see $y'' > 0$ or in words
	When $x = 1$, $y = 0$ hence on <i>x</i> -axis	A1	2	Both statements fully correct
	Total		14	
	TOTAL		75	

Version

General Certificate of Education (A-level) January 2013

Mathematics

MPC3

(Specification 6360)

Pure Core 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MPC3				
Q	Solution	Marks	Total	Comments
1(a)	f(2) = -3 f(3) = 10	M1		$f(x) = x^3 - 6x + 1$ must have both values correct allow $f(2) < 0$ and $f(3) > 0$ only if $f(x)$ is defined and no errors seen
	change of sign $\Rightarrow 2 < \alpha < 3$	A1	2	must have both statement and interval which may be written in words/symbols
(b)	$x^{3} = 6x - 1$ or $x^{2} - 6 + \frac{1}{x} = 0$ or $x^{2} - 6 = -\frac{1}{x}$			must see one of these lines and no errors
	$x^2 = 6 - \frac{1}{x}$	B1	1	AG
(c)	$x_2 = \sqrt{6 - \frac{1}{2.5}} = 2.366(432)$	B1		at least 4sf needed PI by correct x_3
	$x_3 = 2.362$	B1	2	SC1 if B0B0 scored and $x_3 = 2.3617$
	Total		5	

Q	Solution	Marks	Total	Comments
2(a)	y(0) = 0 $y(1) = \frac{1}{3} = 0.3$			
	$y(2) = \frac{1}{3} = 0.\dot{3}$	B1		all 5 <i>x</i> -values PI by 5 correct <i>y</i> -values
	$y(3) = \frac{1}{11} = 0.27$ $y(4) = \frac{4}{18} = 0.2$	B1		at least 4 y-values exact or rounded or truncated to at least 4sf
	$\frac{1}{3} \times 1 \left(0 + 0.\dot{2} + 4 \left[0.\dot{3} + 0.\dot{2}\dot{7} \right] + 2 \left[0.\dot{3} \right] \right)$	M1		correct use of Simpson's rule using $\frac{1}{3}$ and 4 and 2 correctly with candidate's 5 <i>y</i> -values
	= 1.104	A1	4	CAO (must be exactly this value)
(b)	$\int_{0}^{4} \frac{x}{x^{2}+2} dx = \frac{1}{2} \left[\ln \left(x^{2}+2 \right) \right]$	M1 A1		for $k \ln(x^2 + 2)$ all correct; limits not needed
	$=\frac{1}{2}(\ln 18 - \ln 2)$	A1F		For $k (\ln 18 - \ln 2)$
	$=\frac{1}{2}\ln 9$	A1F		combining candidate's logarithms correctly (must be seen)
	$=\ln 3$	A1	5	CAO (must be exactly this) NMS scores 0/5
	Total		9	

0	Solution	Marks	Total	Comments
3(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 3\mathrm{e}^{3x} + \frac{1}{x}$	B1 B1	2	B1 for one term correct B1 all correct
(b)(i)	$\left(\frac{\mathrm{d}u}{\mathrm{d}x}\right) = \frac{\pm \cos x \left(1 + \cos x\right) \pm \sin x \left(\sin x\right)}{\left(1 + \cos x\right)^2}$	M1		clear attempt at quotient/product rule condone poor use of brackets
	$\frac{\cos x(1+\cos x)-\sin x(-\sin x)}{(1+\cos x)^2}$	A1		any correct form seen
	$=\frac{\cos x + \cos^2 x + \sin^2 x}{\left(1 + \cos x\right)^2}$			
	$=\frac{\cos x+1}{\left(1+\cos x\right)^2}$			
	$=\frac{1}{1+\cos x}$	A1cso	3	AG be convinced correct use of brackets and correct notation used throughout (eg A0 if $\cos x^2$ etc seen)
(ii)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{1+\cos x}{\sin x} \times \frac{1}{1+\cos x} \text{OE}$	M1		correct use of chain rule
	$=\frac{1}{\sin x}$			1
	$= \operatorname{cosec} x$	A1	2	AG, must see $=\frac{1}{\sin x}$ and no errors seen;
				condone incorrect use of brackets only if penalised in part (b)(i)
	Total		7	
0	Solution	Marks	Total	Comments
------	--	----------	-------	---
4(a)		M1		reflection in the <i>x</i> -axis for the negative $f(x)$ and remainder as given on sketch
		A1	2	correct curvatures, correct cusp at $x = 4$ condone straight lines for $x < 0$ and $x > 4$ 4 marked on <i>x</i> -axis
(b)	Either			
	1. Stretch	M1		1 and either 2 or 3
	2. <i>x</i>-ax1s3. by factor 0.5(followed by) translation	A1 E1		1, 2 and 3
	$\begin{bmatrix} 0.5\\0\end{bmatrix}$	B1	4	
	or			
	translation	(E1)		
	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	(B1)		
	(followed by) 1. Stretch	(M1)		1 and either 2 or 3
	2. <i>x</i> -axis 3. by factor 0.5	(A1)		1, 2 and 3
	Total		6	

Q	Solution	Marks	Total	Comments
5(a)		M1		$f(x) > -\frac{4}{3}, f \ge -\frac{4}{3}, range \ge -\frac{4}{3}$
	$f(x) \ge -\frac{4}{3}$	A1	2	
(b)(i)	$x \ge -\frac{4}{3}$	B1F	1	correct or FT from (a)
(ii)	$x^2 = 3y + 4$			
	$x = (\pm)\sqrt{3y+4}$	M1		either order – M1 for correctly
	$\left(\mathbf{f}^{-1}\left(x\right)=\right)\left(-\right)\sqrt{3x+4}$	M1		operations; M1 for replacing y with x
	$\left(\mathbf{f}^{-1}\left(x\right)=\right)-\sqrt{3x+4}$	A1	3	(dependent on both M1 marks) correct sign
(c)(i)	3r - 1 = 1	M1		Or $3r - 1 - e^0$ or $3r - 1 - +1$
(0)(1)		A 1	2	$CAO NMS \stackrel{2}{\rightarrow} OE scores 2/2$
	3		2	$\frac{1}{3}$ OE scores $\frac{2}{2}$
(ii)	g has NO inverse			must indicate no inverse
	because two values of x map to one value (of y) or it is many-one or it is not one- one or 'it is two-one'	B1	1	with valid reason; do not accept contradictory reasons
(iii)	$\ln \left 3 \times \frac{x^2 - 4}{3} - 1 \right $	M1		
	$\ln \left x^2 - 5 \right $	A1	2	NMS scores 0/2, condone $k = -5$ after correct expression seen
(iv)	$\ln x^2 - 5 = 0$			
	$ x^2 - 5 = 1$			
	$x^2 - 5 = 1$ (or -1 or e^0 or $-e^0$ seen)	M1		$x^2 - k = 1$ etc, for candidate's positive
	$x^2 = 6, 4$ or candidate's $k + 1$ or $k - 1$			integer, k
	$x = \sqrt{6}$, 2	A1F		
	$x = -\sqrt{6}, -2$	A1F		exact values PI by correct answers
-	$(x \le 0 \Longrightarrow) x = -\sqrt{6}, -2$	A1	4	CAO, rejecting the positive
	Total		15	

Q	Solution	Marks	Total	Comments
6(a)	$\frac{\sec^2 x}{(\sec x + 1)(\sec x - 1)} = \frac{\sec^2 x}{\sec^2 x - 1}$			
	$\sec^2 x = 1 + \tan^2 x$ used	M1		M1 for correct use of $\sec^2 x = 1 + \tan^2 x$ at least once or $(\csc^2 x = 1 + \cot^2 x)$
	$=\frac{\sec^2 x}{\tan^2 x} \text{ or } \frac{1+\tan^2 x}{\tan^2 x}$			$\left(=\frac{1}{\cos^2 x \tan^2 x}\right)$
	$=\frac{1}{\sin^2 x}$ or $\cot^2 x + 1$	A1		Shown, with no errors
	$= \csc^2 x$	A1	3	AG (No errors, omissions or poor notations seen)
(b)	$\csc^2 x = \csc x + 3$			
	$\csc^2 x - \csc x - 3 = 0$	B1		must have $= 0$
	$\operatorname{cosec} x = \frac{1 \pm \sqrt{13}}{2}$ or (2.3 and - 1.3)	M1		correct solution of the quadratic, or by completing the square $\left(\csc x = \pm \sqrt{\frac{13}{4}} + \frac{1}{2} \right)$
				PI by values for sin x
	$\sin x = \frac{2}{1 \pm \sqrt{13}}$	B1F		B1F for $\operatorname{cosec} x = \frac{1}{\sin x}$ seen or implied
	= 0.434 and -0.768 (or -0.767)	A1		PI
	<i>x</i> = 26°, 154°, -50°, -130°	B1 B1	6	B1 for any three values correct AWRT B1 for all four values correct AWRT and no extras in the interval $-180^\circ < x < 180^\circ$
(c)	$2\theta - 60^\circ = x$	M1		where x is a written value from candidate's (b) in degrees
	$\theta = 43^\circ, 5^\circ$	A1	2	CSO
				Ignore solutions outside interval $0^{\circ} < \theta < 90^{\circ}$
			44	
	Total		11	

0	Solution	Marks	Total	Comments
7(a)	$y = 4x\cos 2x$			
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 4\cos 2x - 4x(2)\sin 2x$	M1		anything reducible to $A \cos 2x + Bx \sin 2x$ where A and B are non-zero integers
		A1		OE, all correct
	gradient of the tangent 2π π 2π	m1		substituting $\frac{\pi}{4}$ into candidate's derived
	$A\cos\frac{2\pi}{4} + B \times \frac{\pi}{4}\sin\frac{2\pi}{4}$			function
	$=-2\pi$	A1		must have -2π using correct $\frac{dy}{dx}$
	an equation of the tangent is			
	$y = -2\pi \left(x - \frac{\pi}{4}\right)$	A1	5	OE, dependent on previous A1
(b)				$\left(\int_{0}^{\frac{\pi}{4}} 4x\cos 2x\mathrm{d}x\right)$
	$u = Ax$ $\frac{\mathrm{d}v}{\mathrm{d}x} = \cos 2x$	M1		all 4 terms in this form seen or used
	$\frac{\mathrm{d}u}{\mathrm{d}x} = A \qquad v = B\sin 2x \qquad $	A1		$A = 4 \text{ and } B = \frac{1}{2} \text{ or } A = 1 \text{ and } B = 2, \text{ etc}$
	$= \left[4x\frac{1}{2}\sin 2x\right]_{(0)}^{\left(\frac{\pi}{4}\right)} - \int_{(0)}^{\left(\frac{\pi}{4}\right)} 4 \times \frac{1}{2}\sin 2x(dx)$	m1		correct substitution of candidate's terms into integration by parts formula condone missing limits
	$= \left[4x\frac{1}{2}\sin 2x\right]_{(0)}^{\left(\frac{\pi}{4}\right)} - \left[-\cos 2x\right]_{(0)}^{\left(\frac{\pi}{4}\right)}$	A1F		candidate's second integration completed correctly FT on one error including coefficient condone missing limits
	$=\frac{\pi}{2}-1$	A1	5	OE, exact value
	Total		10	

Q	Solution	Marks	Total	Comments
8(a)	$\int e^{1-2x} dx = k e^{1-2x}$ or $e(k e^{-2x})$	M1		where k is a rational number
	$\int_{0}^{\ln 2} e^{1-2x} dx = -\frac{1}{2} e^{1-2x} \Big _{0}^{\ln 2} \text{ or } e^{\left[-\frac{1}{2} e^{-2x}\right]_{0}^{\ln 2}}$	A1		correct integration condone missing limits
	$= -\frac{1}{2}e^{1-2\ln 2}\frac{1}{2}e^{1-2(0)}$	A1		correct (no decimals)
	$=-\frac{1}{2}\left(\frac{1}{4}e\right)+\frac{1}{2}e$			eliminating ln
	$=\frac{3}{8}e$	A1	4	AG, be convinced
(b)	$\mu = \tan x$			
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \sec^2 x$	M1		PI below, condone $du = \sec^2 x dx$
	Replacing dx by $\frac{1}{\sec^2 x} (du)$ in integral	A1		or $\frac{1}{1+u^2}(\mathrm{d}u)$
	$\sec^2 x = 1 + u^2$	B1		PI below
	$ \begin{array}{ccc} x = 0 & \Rightarrow & u = 0 \\ x = \frac{\pi}{4} & \Rightarrow & u = 1 \end{array} $	B1		this could be gained by changing <i>u</i> to tan <i>x</i> after the integration and using $x = 0$ and $x = \frac{\pi}{4}$
	$\int_{0}^{\frac{\pi}{4}} \sec^4 x \sqrt{\tan x} \mathrm{d}x$			
	$= \int (1+u^2) \sqrt{u} (du) \text{ or } \int (1+u^2)^2 \sqrt{u} \frac{(du)}{1+u^2}$	M1		all in terms of u including replacing dx all correct, condone omission of du
	$= \int \left(u^{\frac{5}{2}} + u^{\frac{1}{2}} \right) (\mathrm{d}u)$	A1		must be in this form
	$=\frac{2}{7}u^{\frac{7}{2}}+\frac{2}{3}u^{\frac{3}{2}}$	A1		accept correct unsimplified form
	$=\frac{20}{21}$	A1	8	CAO
	Total		12	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2013

Mathematics

MPC3

(Specification 6360)

Pure Core 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

0	Solution	Marks	Total	Comments
1(a)	(2x-3=x)			
	x = 3	B1		
	2x - 3 = -x	M1		or $-(2x-3) = x$ or $-2x+3 = x$
	<i>x</i> = 1	A1	3	
(b)	$(2x-3 \ge x)$			No ISW in part(b), <i>mark their final line as their answer</i> .
	$x \leq 1$	B1		Or $1 \ge x$
	$x \ge 3$	B1	2	Or $3 \le x$ Or " $x \le 1$ or $x \ge 3$ " for B1 B1
	Total		5	
2(a)	$\left(y = x^4 \tan 2x\right)$			
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 4x^3 \tan 2x + x^4 2\sec^2 2x$	M1		$4x^3 \tan 2x + Ax^4 \sec^2 kx$ OE where A is a non-zero constant.
		A1		A1 for $k = 2$ may have $(\sec 2x)^2$ or $\frac{1}{\cos^2 2x}$
		A1	3	A1 all correct ISW if attempt to simplify is incorrect.
(b)				
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\pm 2x(x-1)\pm 1(x^2)}{(x-1)^2}$	M1 A1		Use of the quotient rule $\frac{2x(x-1) - 1(x^2)}{(x-1)^2}$
	$\left(=\frac{x^2-2x}{(x-1)^2}\right)$			Simplification not required
	$\left(\frac{dy}{dx}\right) = \frac{3}{4}$ or 0.75 OE	A1	3	Obtained from correct $\frac{dy}{dx}$
	Total		6	

Q	Solution	Marks	Total	Comments
3 (a)	f(3) = -0.2(18)			$f(x) = e^{-x} - 2 + \sqrt{x}$
	f(4) = 0.01(83)	M1		Both values correct
	Change of sign $\Rightarrow 3 < \alpha < 4$	A1	2	Must have both statement and interval in words or symbols.
(b)	$(x_{n+1} = (2 - e^{-x_n})^2 \qquad x_1 = 3.5)$			
	$(x_2 = 3.8801)$			
	$x_2 = 3.880$	B1		Do not accept 3.88
	$(x_3 = 3.9178)$			
	$x_3 = 3.918$	B1	2	Do not accept 3.917
(c)	y A	M1		Staircase to curve from x_1 including at least two stairs between curve and line $y = x$.
		A1	2	x_2 and x_3 marked on the <i>x</i> -axis. Do not accept marking on the Curve or on the line.
	Total		6	

MPC3- AQA GCE Mark Scheme 2013 June series

			-	a
Q	Solution	Marks	Total	Comments
4	$\left(8\sec x - 2\sec^2 x = \tan^2 x - 2\right)$			
	$8 \sec x - 2 \sec^2 x = \sec^2 x - 1 - 2$	M1		Using $\tan^2 x = \sec^2 x - 1$ and NOT replacing $\sec^2 x$ with $1 + \tan^2 x$.
	$3\sec^2 x - 8\sec x - 3(=0)$	A1		
	$(3\sec x + 1)(\sec x - 3)(=0)$ Or $\sec x = \frac{8 \pm \sqrt{(-8)^2 - 4(3)(-3)}}{2(3)}$	m1		Correct factors or correct use of quadratic equation formula or completing the square for 'their' equation. $\sec x - \frac{8}{6} = \pm \sqrt{\frac{64}{36} + 1}$
	$\sec x = 3$, $-\frac{1}{3}$ (or -0.33)	A1		Both correct.
	$\sec x = \frac{1}{\cos x}$ $\left(\cos x = \frac{1}{3} \text{ or } 0.33\right)$	B1		PI $\left(\sec x = -\frac{1}{3} \text{ is impossible}\right)$
	x = 1.23 , 5.05	A1		One correct. Must have earned A1 for correct quadratic, but independent of the second A1.
		A1	7	Both correct and no extras in $0 < x < 2\pi$. CAO
	Total		7	
	_ • • • • •			1

MPC3- AQA GCE Mark Scheme 2013 June series

Q	Solution	Marks	Total	Comments
5(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1		All 5 <i>x</i> -values correct, PI by 5 correct <i>y</i> -values.
		B1		At least 4 correct y-values rounded or truncated to at least 4 s.f. or in surd form $\sqrt{27 + (0.4)^3}, \sqrt{27 + (1.2)^3}$, etc. or $\sqrt{27.064}, \sqrt{28.728}$, etc. or sight of 32.057
	$\int_{0}^{4} \sqrt{27 + x^{3}} \approx 0.8 \sum_{i=1}^{5} y_{i}$ (= 0.8 × 32.057)	M1		Correct use of mid-ordinate rule using 0.8 with candidate's 5 <i>y</i> -values. Dependent on first B1
	= 25.6	A1	4	CAO (must be exactly this) and no error seen
(b)				Could be gained without answering part (a)
		B1		Diagram showing curve through the midpoint of the top of rectangle. May have one or more rectangles.
	"Smaller" OE	E1	2	Dependent on B1
	Total		6	

Q	Solution	Marks	Total	Comments
Q 6(a) (b)	Solution y π $(-1, \pi)$ and $(1, 0)$ y π π	Marks B1 B1	Total	Comments Correct sketch of $\cos^{-1} x$. Stated Correct sketch of $\pi - \cos^{-1} x$ Must touch negative x-axis.
	$(-1, 0) \text{ and } (1, \pi)$	B1	2	Stated
	Total		Δ	
	Total		4	

MPC3- AQA GCE Mark Scheme 2013 June series

Q	Solution	Marks	Total	Comments
7(a)				
	y y	M1		Reflection in the <i>x</i> -axis.
	-4 -4 x	A1	2	Intersection with the x-axis and y-axis marked 2 and -4 .
(h)				instead of marking on the axes.
	y A	M1		Reflection of 0< x <6 part in the y-axis giving two connected sections
	-6 O 6 x	A1		Correct curve beyond ± 6 , correct curvature and correct cusp at $x=0$ (generous)
		A1	3	± 6 and 4 marked correctly Accept (6, 0), (0, 4) and (-6,0) instead of marking on the axes.
(c)	Reflection	M1		
	in the y-axis	A1		
	(followed by) 1) stretch 2) parallel to the r-axis	M1		1 and either 2 or 3
	3) by factor 2	A1	4	1, 2 and 3
	OR			
	Vice versa			
	Total		9	

0	Solution	Marks	Total	Comments
8(a)(i)	$f(x) = \ln(2x - 3)$			
	$2x-3=e^{y}$	M1	ſ	Either order:
	$2y - 3 = e^{x}$	M1	1	M1 for antilog
			l	M1 for replacing $f(x)$ or y with x
	$(f^{-1}(x) =) \frac{1}{2}(e^x + 3)$ OE	A1	3	Correct expression in <i>x</i>
(ii)	$f^{-1}(x) > \frac{3}{2}$	B1	1	Do not condone
				$f^{-1}(x) \ge \frac{3}{2}, y > \frac{3}{2}, x > \frac{3}{2}$
(iii)				range $> \frac{3}{2}$, $f^{-1} > \frac{3}{2}$
	y 🛉	M1		Correct shape crossing <i>y</i> -axis and above <i>x</i> -axis
	2	A1	2	2 marked on the y-axis
	<i>0x</i>			
(b)(i)	$(gf(x) =) e^{2\ln(2x-3)} - 4$	M1		Correct composition
	$=e^{\ln(2x-3)^2}-4$	m1		PI by correct expression
	$=(2x-3)^2-4$	A1	3	
(ii)	$(fg(x) =) ln(2(e^{2x} - 4) - 3)$	M1		OE correct composition
	$\ln(2e^{2x} - 11) = \ln 5$			
	$2e^{2x} - 11 = 5$ OE	A1		Correct antilog of correct equation
	$e^{2x} = 8$ 2x = ln 8			
	1, 1, 0			OE exact solution, e.g.
	$x = \frac{1}{2} \ln 8$	A1	3	$1 \sqrt{2} 3 1 2 1 2^{\frac{3}{2}}$
				$\ln\sqrt{8}$ or $-\ln 2$ or $\ln 2^2$
	Total		12	

Q	Solution			
•	Solution	Marks	Total	Comments
9				$V = \pi \int x^2 dy$
r^2 –	$-\frac{1}{(v-8)^2}+2$	D1		$16x^2 - (y-8)^2 = 32$
л –	$\frac{-16}{16}(y-3) + 2$	BI		
<i>V</i> =	$= (\pi) \int_{(0)}^{(1)} \left(\frac{1}{16} (y-8)^2 + 2 \right) (dy)$	M1		Accept 'their' x^2 in terms of y Condone missing limits and π wherever bracketed
<i>V</i> =	$= (\pi) \left[\frac{1}{16} \times \frac{1}{3} (y-8)^3 + 2y \right]_{(0)}^{(16)}$	A1		OE, for correct integration of correct integrand
<i>V</i> =	$= (\pi) \left[\frac{1}{16} \times \frac{1}{3} (16 - 8)^3 + 2(16) - \frac{1}{16} \times \frac{1}{3} (-8)^3 \right]$	A1		OE, correct use of correct limits in correct expression, PI by correct answer.
<i>V</i> =	$=\frac{160}{3}\pi$	A1	5	OE exact value, eg $\pi 53\frac{1}{3}$ or $\pi 53.3$ or $\frac{2560}{48}\pi$
	Total		5	

Q	Solution	Marks	Total	Comments
10(a)(i)	dy)			
	$u = \ln x \qquad \frac{\mathrm{d}v}{\mathrm{d}x} = 1$	M1		$\frac{d \ln x}{dx} \& \int dx$ attempted
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x} \qquad \qquad v = x \qquad \qquad$	A1		All correct
	$\left(\int \ln x \mathrm{d}x = \right) x \ln x - \int x \times \frac{1}{x} (\mathrm{d}x)$	m1		Correct substitution of their terms into parts
	$= x \ln x - x + C$	A1	4	All correct (constant needed)
(ii)	$u = (\ln x)^2$ $\frac{\mathrm{d}v}{\mathrm{d}x} = 1$	M1		$\frac{d(\ln x)^2}{dx}$ & $\int dx$ attempted
	$\frac{\mathrm{d}u}{\mathrm{d}x} = (2\ln x)\frac{1}{x} \qquad v = x$	A1		All correct
	$\left(\int (\ln x)^2 dx = \right) x(\ln x)^2 - \int x \times \frac{2}{x} \ln x (dx)$	m1		OE correct substitution of their terms into parts
	$= x(\ln x)^2 - 2(x\ln x - x) + C \text{OE}$	A1	4	All correct (constant needed) including correct use of brackets. Do not penalise missing constant if already penalised in part (i) ISW
(b)	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2\sqrt{x}} \text{or} \frac{1}{2}x^{-\frac{1}{2}}$ $(\mathrm{d}x = 2u \mathrm{d}u)$	B1		$u = \sqrt{x}$
	$\int_{(1)}^{(4)} \frac{1}{x + \sqrt{x}} dx = \int_{(1)}^{(2)} \frac{1}{u^2 + u} 2u (du)$	M1		All in terms of u including attempt at replacing dx (not simply writing du), condone missing limits and du
		A1		Integrand correct unsimplified
	$=2\int_{(1)}^{(2)}\frac{1}{u+1} (\mathrm{d}u)$	A1		
	$= 2\ln(u+1)\Big _{(1)}^{(2)}$	A1F		FT their $\int \frac{k}{u+1} (\mathrm{d}u)$
	$= 2 \ln(2+1) - 2 \ln(1+1)$ or $2 \ln(\sqrt{4}+1) - 2 \ln(\sqrt{1}+1)$	A1F		correct use of correct limits on $k \ln(u+1)$ or $k \ln(\sqrt{x}+1)$
	$=2\ln\frac{3}{2}$ or $\ln\frac{9}{4}$ or $2\ln3 - 2\ln2$	A1	7	OE ISW
	Total		15	
	TOTAL		75	

A-LEVEL MATHEMATICS

Pure Core 3 – MPC3 Mark scheme

6360 June 2014

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to	mark	scheme	abbreviations
--------	------	--------	---------------

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment	
1	y(0) = 0 $y(\frac{\pi}{4}) = 0.6266(57068)$	B1		All 5 <i>x</i> -values*, PI by 5 correct	
	$\begin{pmatrix} (4) \\ y\left(\frac{\pi}{2}\right) = 1.253(314137) \\ (3\pi) + 0.05(401002) \end{pmatrix}$	B1		All 5 y-values exact** or correct to at least 4SF (rounded or truncated)	
	$y(\frac{\pi}{4}) = 1.085(401882)$ y(\pi) = 0				
	$\frac{1}{3} \times \frac{\pi}{4} \{ 0 + 0 + 4 [0.6267 + 1.0854] + 2 [1.2533] \}$	M1		Correct use of Simpson's rule using $\frac{1}{3} \times \frac{\pi}{4}$ (or 0.26) and 4 and 2 correctly with their 5 <i>y</i> - values from any <i>x</i> -values	
	= 2.449	A1	4	CAO (must be exactly this value)	
	Total		4		
* Accept decimals 0.78(5398), 1.5(7079), 2.3(5619), 3.1(4159) ** $y\left(\frac{\pi}{4}\right) = \left(\frac{\pi}{4}\right)^{\frac{1}{2}} \sin \frac{\pi}{4}$, etc.					
The minin but condo	The minimum evidence for M1 is the 3 correct non-zero values of y in any form and sight of 2.4490(97), but condone omission of the two zeros.				

If a candidate's calculator setting is in degrees, they may earn the first B1 for 0, $\frac{\pi}{4}$, etc, and then B0, but M1

is available .

NMS: An answer of 2.449 without anything else gains 0/4.

Q	Solution	Mark	Total	Comment		
2(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -2 \times \frac{1}{(2\mathrm{e}-x)} or \frac{-2(2\mathrm{e}-x)}{(2\mathrm{e}-x)^2}$	M1		M1 for $\frac{k}{(2e-x)}$ or $k(2e-x)^{-1}, k \in \square$		
		A1	2	OE, all correct		
(b)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -2 \times \frac{1}{(2\mathrm{e}-\mathrm{e})} \left(=-\frac{2}{\mathrm{e}}\right)$	M1		Substituting e for x in their $\frac{dy}{dx}$ PI		
	Gradient of the normal	1		Must have also somed M1 in most (a)		
	$= -\frac{2e-e}{-2} \left(=\frac{e}{2}\right)$	mı		Must have also earned M11 in part (a)		
	$y = 2\ln(2e - e) (= 2)$	B1				
	$y-2 = \frac{e}{2}(x-e)$ or $y = \frac{e}{2}x - \frac{e^2}{2} + 2$	A1	4	OE, but must have simplified the gradient and replaced ln(2e-e) with 1		
(c)(i)	$\left[f(x)=\right] 2\ln(2e-x)-x$ or		4			
	$\begin{bmatrix} g(x) \\ g(x) \end{bmatrix} = \begin{bmatrix} x - 2\ln(2e - x) \end{bmatrix}$					
	f(1) = 1.98 or $g(1) = -1.98$	M1		Must have both values correct		
	f(3) = -1.22 or $g(3) = 1.22$			rounded or truncated to 1 st. Allow $f(1) > 0$ and $f(3) < 0$ only if $f(x)$		
				is defined. OR evaluating both sides of $2\ln(2e-x) = x$:		
				$2\ln(2e-1) = 2.98 \qquad x = 1 \\ 2\ln(2e-3) = 1.78 \qquad x = 3 \end{cases} $ (M1)		
				2.98 > 1 and 1.78 < 3 \Rightarrow 1 < α < 3 (A1)		
	Change of sign $\Rightarrow 1 < \alpha < 3$	A1		All working must be correct together with correct statement		
(ii)	$x_2 = 2.980$ (2.97976)	B1	2	Not 2.98		
	$x_3 = 1.798$ (1.7977)	B1		If B0, B0 scored but both values given		
			2	SC1.		
(iii)	y = x	M1		Vertical line from x_1 to curve(condone		
				omission from x - axis to $y = x$) and then horizontal line from the curve to $y = x^*$		
	$y = 2\ln(2e - x)$	A1		Second vertical and horizontal lines * and x_2 , x_3 (or the values) must be labelled on x - axis **		
	$O \qquad x_1 x_3 \qquad x_2 \qquad x$		2			
	Total		12			
c(iii)	* On diagram, the solid lines may be dotted an	d the dot	tted line	es need not be shown.		
	** Condone correct values (unrounded or 3 dp) marked on the x-axis instead of x_2 and x_3 .					

Q	Solution	Mark	Total	Comment
3(a)(i)	$k x(x^2+1)^{\frac{3}{2}}$ or $k x u^{\frac{3}{2}}$	M1		Attempted use of the chain rule
	$\frac{5}{2} \times 2x \left(x^2 + 1\right)^{\frac{3}{2}}$	A1	2	OE, all correct
(ii)	$2e^{2x}$	B1		Differentiating e ^{2x} correctly
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 2\mathrm{e}^{2x}\left(x^2+1\right)^{\frac{5}{2}} + \mathrm{e}^{2x}\left(\text{their part (a)(i)}\right)$	M1		OE
	$\left(\frac{dy}{dx}\right) = 2e^{2x}\left(x^2+1\right)^{\frac{5}{2}} + e^{2x}\frac{5}{2} \times 2x\left(x^2+1\right)^{\frac{3}{2}}$			
	$\left(\text{When } x = 0\right) \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = 2$	A1	3	Substituting $x = 0$ and CSO
(b)	$\frac{4(x^2+1)-2x(4x-3)}{(x^2+1)^2}$	M1	C .	M1 for $\frac{\pm 4(x^2+1)\pm 2x(4x-3)}{(x^2+1)^2}$
		A1		All correct
	$-4x^{2} + 6x + 4 \ (=0) or 2x^{2} - 3x - 2 \ (=0)$	m1		Forming a quadratic equation with all terms on one side $ax^2 + bx + c (= 0)$ $b \neq 0, c \neq 0$
	(2x+1)(x-2) (=0)	A1		OE correct factors or using the $\sqrt{25}$
				formula as far as $x = \frac{3 \pm \sqrt{25}}{4}$ or
				completing the square as far as
				$x - \frac{3}{4} = \pm \sqrt{\frac{25}{16}}$
	$x = 2$, $x = -\frac{1}{2}$	A1	5	CAO, simplified answers
	Total		10	

Q	Solution	Mark	Total	Comment
4(a)	-3 2	M1		Reflection in the <i>x</i> -axis for the positive $f(x)$ and the remainder as given in the sketch.
		A1		Correct $-3 < x < 2$ with minimum at $x < 0$ lower than minimum at $x > 0$ and correct cusps at $x = -3$, 0, 2.
(h)	•	A1	3	Correct branches for $x > 2$ and $x < -3$, including the curvature of both branches and 2 and -3 marked *
		M1		Symmetrical about the <i>y</i> -axis using only the original curve for $x>0$
		A1	2	-1 and 1 labelled on the <i>x</i> -axis and correct cusp at $x=0$
(c)(i)*	Stretch (I)	M1		(I) and either (II) or (III)
	s.f. $\frac{1}{2}$ (II) // x-axis (III)	A1		(I) and (II) and (III)
	(followed by) Translation	E1		Not 'shift', 'move', etc.
	$\begin{bmatrix} -1\\ 0 \end{bmatrix}$	B1	4	Or in words Not (-1, 0)
(ii)	(1, -3)	B1 B1		B1 for each coordinate
	Or $x = 1$, $y = -3$		2	
	Total		11	
(a)	* The two AT marks are independent. Cond but not curves which are concave upward	one strai	ght line	s for the branches for $x > 2$ and $x < -3$
*(c)(i)	Alternative: Translation E1			
	$\begin{bmatrix} -2\\ 0 \end{bmatrix}$ B1			
(followed by)			
	s f $\frac{1}{2}$ (II) M1 · (I) and eit	her (II) c	or (III)	A1 \cdot (I) (II) and (III)
	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ x - axis \end{array} (III) $		» (III)	···· (1), (11) und (111)

Q	Solution	Mark	Total	Comment		
5 (a)		M1		f(x) > -4, or		
				***** ≥ -4 ,		
	$\mathcal{L}(\mathcal{L}) > \mathcal{L}$	A1				
	$f(x) \ge -4$		2			
(b)	$y = (x-3)^2 - 4$					
	$x-3=(\pm)\sqrt{y+4}$	M1				
		111				
	$x = 3 \pm \sqrt{y+4}$	A1		condone $x = 3 + \sqrt{y+4}$		
	$y = 3 \pm \sqrt{x+4}$	B1		interchanging x and y at any stage		
	, <u> </u>					
	$(f^{-1}(x) =) 3 + \sqrt{x+4}$	A1	4	negative clearly rejected.		
				must have \pm earlier.		
$(a)(\mathbf{i})$		D 1				
(C)(I)	$(gt(x) =) x^2 - 6x + 5 - 6 \text{ or } x^2 - 6x - 1 $	DI	1			
(;;)			_			
(11)	<i>their</i> $x^2 - 6x + 5 - 6^2 = 6$	M1		and attempt to solve 3 term quadratic		
	'their $x^2 - 6x + 5 - 6' = -6$	M1		and attempt to solve 3 term quadratic		
	x = 7	IVI I		and attempt to solve 5 term quadratic		
	x = -1	A1		all four solutions seen and correct		
	$\begin{array}{c} x = 5 \end{array}$					
	x = 1					
	x = 5 $x = 7$	E1		values 1 and -1 clearly rejected		
			4			
	Total		11			
			4			
(a)	$f(x) > -4$, $f \ge -4$, ≥ -4 , $x \ge -4$, 1	range \geq -	-4, y	≥ -4 score M1 only		
	y > -4, etc scores M0 (two errors)					
(b)	Alternative					
	$y = x^2 - 6x + 5$					
	$x^2 - 6x + (5 - y) = 0$					
	c + 2c + 4(5 - c)					
	$x = \frac{6 \pm \sqrt{36 - 4(5 - y)}}{2}$ correctly solving M1					
	$\frac{2}{6+\sqrt{16+4x}}$					
	$x = \frac{6 \pm \sqrt{16 + 4y}}{2} \text{A1}$					
	L	+ 1 x				
	B1 for swapping x and y and A1 for $\frac{6+\sqrt{10}}{2}$	$\frac{+4x}{}$]	naving r	ejected minus sign		
	2					

Q	Solution	Mark	Total	Comment
6(a)	$\int x^2 \sin 2x \mathrm{d}x$			
	$u = x^{2} \qquad \frac{du}{dx} = 2x$ $\frac{dv}{dx} = \sin 2x \qquad v = -\frac{1}{2}\cos 2x$	M1 A1		$\frac{du}{dx} = kx, k = 1 \text{ or } 2 \text{ and } v = p \cos 2x$ $p = \pm 1, \pm 2, \pm 0.5$ All correct
	$\left(\int x^2 \sin 2x dx = \right)$ $-\frac{1}{2}x^2 \cos 2x + \int x \cos 2x (dx)$	A1F		Correct substitution of their terms into parts formula
	$u = x \qquad \qquad \frac{du}{dx} = 1$ $\frac{dv}{dx} = \cos 2x \qquad \qquad v = \frac{1}{2}\sin 2x$	m1		Correct follow through unsimplified from their first integral above
	$\left(\int x^{2} \sin 2x dx = \right) -\frac{1}{2}x^{2} \cos 2x + \frac{1}{2}x \sin 2x - \frac{1}{2} \int \sin 2x (dx)$	A1		Correct
	$= -\frac{1}{2}x^{2}\cos 2x + \frac{1}{2}x\sin 2x + \frac{1}{2}\times\frac{1}{2}\cos 2x + C$	A1	6	OE, must have constant of integration
(b)	$(V =) \pi \int_{0}^{\frac{\pi}{2}} x^2 \sin 2x \mathrm{d}x$	B1	0	Fully correct including dx and limits
	$= (\pi) \left[-\frac{1}{2} \left(\frac{\pi}{2} \right)^2 \cos \pi + \frac{1}{2} \left(\frac{\pi}{2} \right) \sin \pi + \frac{1}{4} \cos \pi - \frac{1}{4} \right]$	M1		Attempt at $F\left(\frac{\pi}{2}\right) - F(0)$
	$= \pi \left(\frac{\pi^2}{8} - \frac{1}{2} \right)$	A1	3	FT their expression from part (a) OE in exact form with $\cos \pi$ and $\sin \pi$ evaluated
	Total		9	

Q	Solution	Mark	Total	Comment
7	$\frac{du}{dx} = -3x^2 \text{ or } du = -3x^2 dx$ and substituting for dx and x in terms of u	M1		Condone $\frac{du}{dx} = 3x^2$ or $du = 3x^2 dx$ for M1
	$\int \frac{-(3-u)}{3u} \mathrm{d}u$	A1		OE correct unsimplified integral in terms of <i>u</i> only with d <i>u</i> seen on this line or later
	$=\int \left(\frac{1}{3} - \frac{1}{u}\right) (\mathrm{d}u)$	A1		PI by the next line
	$= \left[\frac{u}{3} - \ln u\right]_{(3)}^{(2)}$	A1F		FT on their $\int \left(a + \frac{b}{u}\right) du$
	$=\left[\frac{2}{3} - \ln 2 - \left(\frac{3}{3} - \ln 3\right)\right]$	m1		Correct use of correct limits in u for expression of form $au +b \ln u$ or in terms of x
	$-\ln 2 + \ln 3 - \frac{1}{3}$ or $\ln \frac{3}{2} - \frac{1}{3}$	A1	6	OE exact value
	lotal		Ö	

Q	Solution	Mark	Total	Comment		
8 (a)						
0(a)	$\frac{1 - \sin x}{\cos x} + \frac{\cos x}{1 - \sin x} = \frac{(1 - \sin x)^2 + \cos^2 x}{\cos x (1 - \sin x)}$	M1		Combining fractions correctly		
	$=\frac{1-2\sin x+\sin^2 x+\cos^2 x}{\cos x(1-\sin x)}$					
	$=\frac{1-2\sin x+1}{\cos x\left(1-\sin x\right)}$	m1		Using $\sin^2 x + \cos^2 x = 1$		
	$=\frac{2-2\sin x}{\cos x(1-\sin x)} or \frac{2(1-\sin x)}{\cos x(1-\sin x)}$	A1		Must have factorised denominator		
	$=\frac{2}{\cos x}$					
	$=2 \sec x$	A1	Л	AG, both expressions seen		
(b)	$\tan^2 x - 2 = 2 \sec x$		4			
	$\sec^2 x - 1 - 2 = 2 \sec x$			Using $\tan^2 x = \sec^2 x - 1$, OE		
	$\sec^2 x - 2\sec x - 3 (= 0)$	B1		Or $3\cos^2 x + 2\cos x - 1 (= 0)$		
	$(\sec x - 3)(\sec x + 1) (=0)$	M1		Correctly factorising their expression or substituting into formula		
	$\sec x = 3 or -1$	A1		Or $\cos x = \frac{1}{3} \text{ or } -1$		
	$\sec x = 3 \implies x = 71^\circ$, 289°	B1 B1				
	$\sec x = -1 \implies x = 180^{\circ}$	B1		\int no extras inside the interval		
			6	$\begin{bmatrix} 0 \le x < 360^\circ & , -1 \text{ EE} \end{bmatrix}$		
(c)	$2\theta - 30^\circ = 70.5^\circ$, 180° , 289.5°	M1		For RHS accept any <i>x</i> -value from part (b) PI		
	$\theta = 50^{\circ}$, 105° , 160°	A1	2	Allow 51°, 105°, 160°		
	Total		12			
	TOTAL		75			
(b) <i>:</i>	(b) $x = 70^{\circ}$ and 290° scores B0 B0 AWRT $x = 71^{\circ}$ and 289° both not given to the nearest degree earns SC1.					

(c) Condone correct answers not given to the nearest degree if already penalised in part (b), AWRT $\theta = 50^{\circ} \text{ or } 51^{\circ}, 105^{\circ}, 160^{\circ}$

A-LEVEL Mathematics

Pure Core 3 – MPC3 Mark scheme

6360 June 2015

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
1a	$\begin{array}{ c c c c c c c c c }\hline x & y \\ \hline 2 & 1 \times \ln 4 &= 1.38629 \\ \hline 3 & e^{-1} \times \ln 7 &= 0.71586 \\ \hline 4 & e^{-2} \times \ln 10 &= 0.31162 \\ \hline 5 & e^{-3} \times \ln 13 &= 0.12770 \\ \hline \end{array}$	B1 M1		All 4 correct x values (and no extras used) PI by 4 correct y values At least 3 correct y in exact form or decimal values, rounded or truncated to 3dp or better (in table or formula) (PI by correct answer)
	$\int = (1 \times) \sum y$	m1		Correct substitution into formula, with $h=1$ of 4, and only 4, correct y values (as above) either listed (with + signs) or totalled.
	= 2.541	A1	4	CAO, must be this exactly and no error seen
b	$\left(\frac{dy}{dx}\right) - e^{2-x}\ln(3x-2) + e^{2-x}\frac{3}{3x-2}$	M1		$Ae^{2-x}\ln(3x-2) + e^{2-x}\frac{B}{3x-2}$
		A1		A = -1
	(When $x = 2$) dy 3 3 1	A1		<i>B</i> = 3
	$\left(\frac{dy}{dx}\right) = \frac{3}{4} - \ln 4$ or $\frac{3}{4} + \ln \frac{1}{4}$	A1	4	ISW
	Total		8	
 (a) NMS: An answer of 2.541 without anything else earns 0/4 The '1 x' may not be seen but implied (b) NMS: An answer of -0.636 without anything else earns 0/4 				

Q2	Solution	Mark	Total	Comment	
а	A 1. Y				
	x				
		M1		Correct shape, inverted V, roughly	
				auadrant	
		A1		In all 4 quadrants	
	(1.5, 0) and $(-2.5, 0)$	B1		Shown on sketch or coordinates stated	
	(0, 3)	BI	4	Shown on sketch or coordinates stated	
				(diagram takes precedence)	
b	(x=)1	B 1		OE	
	x = 4 + (2x + 1)	M1			
	(x =) - 5	A1	3		
С	-5 < x < 1	B2	2	Or for $x > -5$ AND $x < 1$	
d	Reflection in $y = k$	M1		ΓΟ]	
	x-axis (or line $y = 0$)	A1		Translation $\begin{bmatrix} r \\ p \end{bmatrix}$ (M1)	
	(followed by)			n = 4 (A1)	
	Translation $\begin{bmatrix} 0 \end{bmatrix}$			(followed by) (PI)	
		M1		Reflection in $y = k$ (M1)	
	<i>p</i> = 4	A1	4	k = 4 (A1)	
				oe	
(\mathbf{a}) For \mathbf{M}	Total		$\frac{13}{1}$	on avec for D1 D1	
(a) For M	I must be attempt at straight lines. Condo	one corre	ct values	on axes for B1 , B1	
(b) NMS:	x = -5 scores SC1				
If squaring: $x^2 - 8x + 16 = 4x^2 + 4x + 1$ therefore $3x^2 + 12x - 15 = 0$ scores M1 , then A1 , B1 as above					
(c) $x \ge 5$ $x \le 1$ scores SC1 $x \ge 5$ or $x \le 1$ scores SC1					
SC1 for $-5 \le x \le 1$ or $-5 \le x \le 1$ or $-5 \le x \le 1$					
(d) There are other correct possible transformations, but for full marks the order of the two transformations					
must produce the correct answer.					

Q3	Solution	Mark	Total	Comment
ai	$f(x) = 6\ln x - 8x + x^2 + 3$			(or reverse)
	f(5) = -2.3			
	f(6) = 1.75	M1		Both values correct to 1sf (rounded or
	Change of sign(or different signs)			truncated)
	$\Rightarrow 5 < \alpha < 6$	A1	2	Must have both statement and interval
				in words or symbols AND $f(x)$ defined
				OR comparing 2 sides:
				$6\ln 5 = 9.7 8 \times 5 - 5^2 - 3 = 12$
				$6106 = 11$ $8 \times 6 - 6^2 - 3 = 9$ (M1)
				at 5 , LHS \sim KHS, at $6 LHS > RHS$
				$\Rightarrow 5 < \alpha < 6 \tag{A1}$
ii	$x = 4 + \sqrt{12 - 6 \ln x}$			
	$x = 4 + \sqrt{13 - 6 \ln x}$			
	$x - 4 = \sqrt{13} - 6 \ln x$			
	$(x-4)^2 = 13 - 6 \ln x$	M1		Correctly eliminate square root
	$x^2 - 8x + 16 = 13 - 6\ln x$	A1		expanded
	$6\ln x + x^2 - 8x + 3 = 0$	A1	3	AG. CSO
			3	
iii	$x_2 = 5.828$	R1		
	$x_3 = 5.557$	B1	2	
bi	$\frac{dy}{dt} = \frac{6}{2} + 2x - 8$	D1		Condone $\frac{6x^5}{3}$
	dx = x	BI		
	dy a			
	$\left(\frac{dy}{dx}=0\right) 6+2x^2-8x=0$	M1		Equate to zero (PI) and eliminate their
				fraction correctly.
	x = 1, x = 3	A1		
	(x=1), y=-4	A1		
	$(x=3), y=6\ln 3-12 \text{ or } \ln 729-12$	Al	5	Oe for other exact correct values
				If M0 then SC1 for (1, -4) and/or
				$(3, 6 \ln 3 - 12)$
		MI		their w + 4 and 2x their x on either of
	x = 3, y = -8	IVII		their 'pairs'
	$x = 7$, $y = 12 \ln 3 - 24$	A1	2	All correct : oe exact
	Total		14	
(a)(ii) Condone all terms in any order on one side but must have =0				
(a)(iii)	No credit for any answers not to this accurac	ey		

Q4	Solution	Mark	Total	Comment
а		M1		$f(x) \le 5, ** < 5$
	$\mathbf{f}(x) < 5$	A1	2	
bi	$x = 5 - e^{3y}$	M1		Swap x and y at any stage.
	$e^{3y} = 5 - x$			
	$3y = \ln(5-x)$	M1		Correctly converting to ln.
	$(f^{-1}(x) =)\frac{1}{3}\ln(5-x)$	A1	3	ACF
ii	(x =) 4	B1	1	
С	$[gg(x) =] \frac{1}{2(\frac{1}{2x-3}) - 3}$	M1		
	$=\frac{1}{\frac{2-6x+9}{2x-3}}$	A1		or $\frac{2x-3}{2-3(2x-3)}$
	$=\frac{2x-3}{11-6x}$	A1	3	
	Total		9	
(b)(i) Must be convinced that final answer is not $\ln \frac{5-x}{3}$ or $\ln(5-x)/3$				

Q5	Solution	Mark	Total	Comment		
а	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$	M1		$\frac{\pm\cos^2 x \pm \sin^2 x}{\cos^2 x}$		
	$=\frac{1}{\cos^2 x} \qquad \text{or} \qquad 1 + \tan^2 x$ $= \sec^2 x$	A1	2	Must see this line AG; no errors seen and all notation correct		
b	$\int x \sec^2 x dx$ $u = x \qquad \frac{dv}{(dx)} = \sec^2 x$					
	$\frac{\mathrm{d}u}{(\mathrm{d}x)} = 1 \qquad v = \tan x$	M1		All 4 terms in this form with $\frac{du}{dx}$ correct and $\int \frac{dv}{dx}$ attempted		
	$v = \tan x$	B1		ax		
	$x \tan x - \int \tan x (\mathrm{d}x)$	A1				
	$= x \tan x - \ln \sec x + c$	A1	4	OE (e.g. $x \tan x + \ln \cos x$); must have constant of integration		
с	$(\mathbf{V}=)\pi\int_{0}^{1} 25x \sec^{2} x dx$	B1		Must include π , limits and dx		
	$= (25\pi)[(1\tan 1 - \ln \sec 1) - 0]$	M1		Must have $(k)\int x \sec^2 x$ then correct substitution of 0 and 1 into $ax \tan x + b \ln(\sec or \cos)x$ Condone missing 0.		
	= 74	A1	3	Condone AWRT 74		
	Total 9					
(a) Use of product rule scores M0						
(c) $\left[(5\sqrt{x}) \sec x \right]^2$ must be correctly expanded for B1 to be available.						
If the integration has been re-started, then M1 must be for substitution into $ax \tan x + b \ln \sec x$						
Q6	Solution	Mark	Total	Comment		
----	--	----------	-------	--		
a	y x	B1		Correct shape passing through origin		
	$\left(\frac{1}{3}, \frac{\pi}{2}\right)$ $\left(-\frac{1}{3}, -\frac{\pi}{2}\right)$	B1 B1	3	Must be stated Must be stated		
b	$\frac{dx}{dy} = \frac{1}{3}\cos y$ $\frac{dy}{dx} = \frac{3}{\cos y} \text{or} 3\sec y$	M1 A1	2	Both $\frac{dx}{dy}$ and $\frac{dy}{dx}$ seen and used correctly		
	Total		5			

(a) Coordinates must be stated NOT just indicated on axes, but BOTH correct end points clearly labelled on axes scores **SC1**.

Q7	Solution	Mark	Total	Comment		
	$\frac{\mathrm{d}u}{\mathrm{d}x} = -2x$ or $\mathrm{d}u = -2x\mathrm{d}x$	M1		Condone $\frac{du}{dx} = 2x$ or $du = 2x dx$		
	$\int \frac{6-u}{u^{0.5}} \times \frac{\mathrm{d}u}{-2}$	A1		OE correct unsimplified integral in terms of u only, with du seen on this line or later		
	$=-\frac{1}{2}\int (6u^{-0.5}-u^{0.5})\mathrm{d}u$	m1		Terms in the form $\int (a u^{-0.5} + b u^{0.5}) du$		
	$=-\frac{1}{2}(6\frac{u^{0.5}}{0.5}-\frac{2u^{1.5}}{3})$	A1F		Ft must be in the form $cu^{0.5} + du^{1.5}$ Oe (eg allow $c\sqrt{u}$)		
	$(=-6u^{0.5}+\frac{1}{3}u^{1.5})$					
	(Limits $[x]_{1}^{2} = [u]_{5}^{2}$)					
	$\int_{5}^{2} = \left[-6u^{0.5} + \frac{1}{3}u^{1.5} \right]_{5}^{2}$					
	$=(-6\times2^{0.5}+\frac{1}{3}\times2^{1.5})-(-6\times5^{0.5}+\frac{1}{3}\times5^{1.5})$	m1		Correct substitution into expression of the form $eu^{0.5} + fu^{1.5}$ and $E(2) - E(5)$ or		
	$=\frac{13}{3}\sqrt{5}-\frac{16}{3}\sqrt{2}$	A1A1	7	if using x, $F(2) - F(1)$ oe any correct exact form		
	Total		7			
For first A1 allow: $\int \frac{(6-u)^{\frac{3}{2}}}{\sqrt{u}(6-u)^{\frac{1}{2}}} \times \frac{du}{-2}$ For second m1 the substitution must be in the correct order						

Q8	Solution	Mark	Total	Comment
a	$LHS = 4(1 + \cot^2 \theta) - \cot^2 \theta$	M1		Use of a correct trig identity (or identities if using sin/cos) to get an expression/equation in a single trig function
	$4(1 + \cot^2 \theta) - \cot^2 \theta = k$ Or $4 \csc^2 \theta - (\csc^2 - 1) = k$	A1		All correct, including = k
	$\cot^2 \theta = \frac{k-4}{3}$	m1		Correctly isolating trig function – must be tan or cot or cos or sec, from their CORRECT equation
	$\tan^2 \theta = \frac{3}{k-4}$	m1		Correct inversion (at some stage) from their equation
	$\left[\sec^2\theta = \frac{3}{k-4} + 1\right]$			Must see at least one line of working, be convinced
	$\sec^2 \theta = \frac{k-1}{k-4}$	A1	5	AG: no errors seen
b	$\sec^2 \theta = 4$ or $\tan^2 \theta = 3$ or $\cot^2 \theta = \frac{1}{3}$ or $\csc^2 \theta = \frac{4}{3}$	B1		PI by expression for eg sec $x = 2$
	$\sec\theta = \pm 2$	M1		or $\cos\theta = \pm 0.5$ or $\tan\theta = \pm\sqrt{3}$ or $\sin\theta = \pm\frac{\sqrt{3}}{2}$
	$(\theta =)$ 60, 120, 240, 300, 420	A1		Sight of any four of these answers
	<i>x</i> = 22.5°, 82.5°, 112.5°, 172.5°	B1 B1	5	3 correct All correct and no extras in interval (ignore answers outside interval)
	Total		10	

(a) The two m1 marks can be earned in either order. There are many different approaches

(b) If working in radians then max mark is **B1**, **M1**

(a) Different approaches: Ι $LHS = 4(1 + \cot^2 \theta) - \cot^2 \theta$ Use of a correct trig identity (or **M1** identities if using sin/cos) to get an expression/equation in a single trig function $4(1 + \cot^2 \theta) - \cot^2 \theta = k$ **A1** All correct, including = k $k-1=3+3\cot^2\theta$ $k-4=3\cot^2\theta$ Both correct equations from their m1 equation in k. $\frac{k-1}{k-4} = \frac{3+3\cot^2\theta}{3\cot^2\theta}$ Correct equation from their 2 previous **m1** equations $\sec^2 \theta = \frac{k-1}{k-4}$ A1 AG: no errors seen Π $LHS = \frac{4}{\sin^2 \theta} - \frac{\cos^2 \theta}{\sin^2 \theta}$ $=\frac{4-\cos^2\theta}{1-\cos^2\theta}$ Use of a correct trig identity (or **M1** identities if using sin/cos) to get an expression/equation in a single trig function $\frac{4 - \cos^2 \theta}{1 - \cos^2 \theta} = k$ A1 All correct, including = k $\frac{4\sec^2\theta-1}{\sec^2\theta-1} = k$ Correct 'inversion' (at some stage) m1 from their equation Must see at least one line of working, $4\sec^2\theta - 1 = k\sec^2\theta - k$ be convinced for final A1 $k-1 = \sec^2 \theta(k-4)$ m1 Correct equation in the form $a \sec^2 \theta = b$ or $a \cos^2 \theta = b$ from their **CORRECT** equation $\sec^2 \theta = \frac{k-1}{k-4}$ **A1** AG: no errors seen